Patent application number | Description | Published |
20110043338 | WIRELESS IC DEVICE SYSTEM AND METHOD OF DETERMINING AUTHENTICITY OF WIRELESS IC DEVICE - An accessory device to be mounted on a main device is provided with a wireless IC device. The main device is provided with a reader/writer that is an interrogator that communicates with the wireless IC device of the accessory device. When the accessory device is mounted on or about to be mounted on the main device, the reader/writer selects two or more frequencies in a frequency band in which an authentic wireless IC device can communicate to perform communication with the wireless IC device. With this configuration, even if the identification code written in an RFID tag is read and the RFID tag is duplicated, the duplicated RFID tag can be accurately and effectively determined as being counterfeit. | 02-24-2011 |
20110127336 | WIRELESS IC DEVICE AND METHOD FOR MANUFACTURING SAME - A wireless IC device which functions as a non-contact RFID system even when the wireless IC device is attached to an article containing metal, water, salt or the like, without hindering reduction in size and thickness, and a method for manufacturing the same are obtained. The wireless IC device includes a wireless IC chip arranged to process a predetermined wireless signal, a feed circuit board on which the wireless IC chip is mounted, a loop-shaped electrode that is coupled to the wireless IC chip via the feed circuit board, and a first electrode plate and a second electrode plate that are coupled to the loop-shaped electrode. The loop-shaped electrode is sandwiched between the first electrode plate and the second electrode plate and is arranged such that the loop surface thereof is perpendicular to or tilted with respect to the first and the second electrode plates. At least the first electrode plate out of the first electrode plate and the second electrode plate is used for transmission and reception of the wireless signal. | 06-02-2011 |
20110181486 | WIRELESS IC DEVICE - A wireless IC device has a resonant frequency that is hardly altered or affected by external influences and reliably communicates with a reader/writer. The wireless IC device includes a wireless IC chip arranged to process a radio signal, a feeder circuit board coupled to the wireless IC chip and including a feeder circuit, and a radiation electrode arranged at least one principal surface of the feeder circuit board. The feeder circuit board includes a magnetic material and has the feeder circuit disposed therein. The radiation electrode is disposed on at least one principal surface of the feeder circuit board so as to be electromagnetically coupled to the feeder circuit and includes at least two open ends. The wireless IC chip is coupled to the radiation electrode through the feeder circuit and communicates with a reader/writer using HF band frequency. | 07-28-2011 |
20110182039 | COMPOSITE MODULE - A composite module is obtained which enables high-density mounting of components without increasing its size. A composite module includes a main substrate which is a multilayer circuit board, a sub-substrate mounted on a lower surface of the main substrate, a sealing layer arranged on the lower surface of the main substrate to cover the sub-substrate, the sealing layer defining a mount surface arranged to be mounted on a mount board, and terminal electrodes disposed on the mount surface. The terminal electrodes include at least one first terminal electrode drawn directly from the main substrate and at least one second terminal electrode drawn directly from the sub-substrate. | 07-28-2011 |
20110279340 | ANTENNA AND WIRELESS IC DEVICE - An antenna for a wireless IC device having improved energy transfer efficiency with a wireless IC, and a wireless IC device equipped with the antenna are constructed such that the antenna includes a coil pattern and spiral coupling patterns provided at the ends of the coil pattern and disposed so as to face each other. A coupling module including a wireless IC chip and a feeder circuit substrate including a feeder circuit arranged to be coupled to the wireless IC chip is mounted on the coupling pattern so as to define a wireless IC device. The coil pattern is an open type coil pattern. The coupling patterns are arranged close to each other to define a single LC resonator. Thus, energy is concentrated in the coupling patterns, thereby improving the energy transfer efficiency between the antenna and the wireless IC chip. | 11-17-2011 |
20110309994 | ANTENNA DEVICE AND COMMUNICATION TERMINAL APPARATUS - An antenna device includes an antenna element and an impedance converting circuit connected to the antenna element. The impedance converting circuit is connected to a power-supply end of the antenna element. The impedance converting circuit is interposed between the antenna element and a power-supply circuit. The impedance converting circuit includes a first inductance element connected to the power-supply circuit and a second inductance element coupled to the first inductance element. A first end and a second end of the first inductance element are connected to the power-supply circuit and the antenna, respectively. A first end and a second end of the second inductance element are connected to the antenna element and ground, respectively. | 12-22-2011 |
20120001701 | SIGNAL PROCESSING CIRCUIT AND ANTENNA APPARATUS - To form a signal processing circuit and an antenna apparatus that do not need a circuit to adjust resonant frequency of a resonant circuit or resonant-frequency adjustment work and that are downsized, an antenna coil and a capacitor define an antenna resonant circuit. An impedance matching circuit including capacitors, a first coil, and a second coil is provided between the antenna resonant circuit and a wireless IC. The first coil and the second coil are magnetically coupled. | 01-05-2012 |
20120002380 | CIRCUIT BOARD AND MOTHER LAMINATED BODY - A circuit board includes a laminated body including insulation layers made of a flexible material that are stacked on one another. External electrodes are provided on a bottom surface of the laminated body. Ground conductors are provided in the laminated body and that are harder than the insulation layers. The laminated body includes a flexible region and a rigid region that is adjacent to the flexible region when viewed in plan from a z-axis direction. The rigid region is defined by the ground conductors when viewed in plan from the z-axis direction. The external electrodes are provided within the flexible region when viewed in plan from the z-axis direction. | 01-05-2012 |
20120006904 | WIRELESS IC DEVICE COMPONENT AND WIRELESS IC DEVICE - A wireless IC device includes a wireless IC chip, a coupling electrode, and a radiation plate. The coupling electrode includes coupling portions arranged to be coupled to the wireless IC chip and a pair of opposing ends. The pair of opposing ends are capacitively coupled to each other and oppose the radiation plate to be coupled to the radiation plate. The wireless IC chip uses the radiation plate as an antenna to transmit and receive signals having certain frequencies to and from an RFID system. | 01-12-2012 |
20120043117 | SIGNAL TRANSMISSION LINE AND CIRCUIT BOARD - A signal line and a circuit board that can be easily bent in a U shape and prevent unwanted emission include a line portion includes a plurality of laminated line portion sheets made of a flexible material. Signal lines extend within the line portion in an x-axis direction. Ground lines are provided within the line portion on a positive direction side in a z-axis direction with respect to the signal lines and have line widths equal to or smaller than the line widths of the signal lines. Ground lines are provided within the line portion on a negative direction side in the z-axis direction with respect to the signal lines. The signal lines overlap the ground lines when seen in a planar view from the z-axis direction. | 02-23-2012 |
20120043129 | CIRCUIT BOARD AND METHOD FOR MANUFACTURING THE SAME - In a circuit board, a laminate includes a plurality of laminated insulating material layers made of a flexible material. First external electrodes are provided on an upper surface of the laminate, and an electronic component is mounted thereon. Second external electrodes are provided on a lower surface of the laminate and mounted on a wiring board. An internal conductor is provided between first and second adjacent insulating material layers, fixed to the first insulating material layer, and not fixed to the second insulating material layer. The internal conductor is arranged so as to extend across regions obtained by connecting certain ones of the second external electrodes to certain ones of the first external electrodes located closest to the certain ones of the second external electrodes. | 02-23-2012 |
20120056796 | CIRCUIT BOARD AND CIRCUIT MODULE - A circuit board and a circuit module more accurately provide impedance matching between an antenna coil and an electronic component electrically connected to the antenna coil, and include a board body including board portions and a plurality of laminated insulating material layers made of a flexible material. An antenna coil includes coil conductors provided in the board portion. Wiring conductors are provided in the board portion and electrically connected to the antenna coil. The board portion has a structure that is less likely to deform than the board portion. An integrated circuit electrically connected to the wiring conductors is mounted on the board portion. | 03-08-2012 |
20120074229 | RADIO FREQUENCY IC DEVICE AND METHOD OF MANUFACTURING THE SAME - A radio frequency IC device that prevents variations in the value of capacitive coupling between a radio frequency IC element and a radiation electrode and has good signal transmission efficiency includes a radio frequency IC element including input/output electrodes and, a first base including intermediate electrodes that are capacitively coupled to the input/output electrodes and have capacitance values C | 03-29-2012 |
20120086526 | WIRELESS IC DEVICE AND COUPLING METHOD FOR POWER FEEDING CIRCUIT AND RADIATION PLATE - A wireless IC device includes a wireless IC chip, a power feeding circuit substrate including a power feeding circuit including inductance elements, and radiation plates including plate-shaped coupling units. The inductance elements have spiral shapes and are wound in directions opposite to each other. The plate-shaped coupling units in the radiation plates are disposed in a vicinity of the inductance elements so as to be perpendicular or substantially perpendicular to the winding axes of the inductance elements, and eddy currents occur in the plate-shaped coupling units so as to couple the power feeding circuit and the radiation plates with each other. The plate-shaped coupling units may also have spiral shapes. | 04-12-2012 |
20120092222 | ANTENNA AND ANTENNA MODULE - An antenna includes a flexible sheet that includes a first main surface including a first coil electrode located thereon and a second main surface including a second coil electrode located thereon. The first and second coil electrodes are wound in opposite directions when viewed from different directions. A first end of the first coil electrode faces a first end of the second coil electrode through the flexible sheet. Similarly, a second end of the first coil electrode faces a second end of the second coil electrode through the flexible sheet. The first and second coil electrodes define an inductor, the first ends of the first and second coil electrodes define a capacitor, and the second ends of the first and second coil electrodes define a capacitor whereby a resonant antenna is provided. | 04-19-2012 |
20120097428 | SIGNAL LINE PATH AND MANUFACTURING METHOD THEREFOR - A signal line that is easily inflected includes a laminated body including at least insulator layers that include flexible material and are laminated from a positive direction side in a z axis direction to a negative direction side therein in this order. A ground conductor is securely fixed to a main surface on the positive direction side of the insulation sheet in the z axis direction. A signal line is securely fixed to a main surface on the positive direction side of the insulator layer in the z axis direction. A ground conductor is securely fixed to a main surface on the positive direction side of the insulator layer in the z axis direction. The ground conductors and the signal line define a stripline structure. The laminated body is inflected so that the insulator layer is located on an inner periphery side, compared with a location of the insulator layer. | 04-26-2012 |
20120097433 | SIGNAL LINE AND CIRCUIT SUBSTRATE - A signal line is a linear conductor provided within a laminated body. A first ground conductor is provided on a positive direction side in a z axis direction within the laminated body, compared with the signal line, and overlaps with the signal line in a planar view seen from the z axis direction. A second ground conductor is provided on a negative direction side in the z axis direction within the laminated body, compared with the signal line, and overlaps with the signal line in the planar view seen from the z axis direction. Via hole conductors connect the ground conductors to each other. In the first ground conductor, a plurality of opening portions are arranged along the signal line in the planar view seen from the z axis direction. The via hole conductors are provided between the opening portions adjacent to one another, in an x axis direction. | 04-26-2012 |
20120098728 | ANTENNA MODULE - An antenna includes a flexible sheet, a first coil electrode located on a first main surface of the flexible sheet and a second coil electrode located on a second main surface of the flexible sheet. A base film is arranged on the first main surface of the flexible sheet and a wireless communication IC is mounted on the base film. Two input/output terminals of the wireless communication IC are connected to coupling electrodes. A first coupling electrode opposes one end portion of the first coil electrode with the base film disposed therebetween. A second coupling electrode opposes one end of the second coil electrode with the base film, a central electrode and the flexible sheet disposed therebetween. | 04-26-2012 |
20120098729 | ANTENNA AND ANTENNA MODULE - An antenna includes a flexible sheet, a first coil electrode being formed on a first main surface of the flexible sheet and a second coil electrode being formed on a second main surface of the flexible sheet. Another end portion of the first coil electrode and another end portion | 04-26-2012 |
20120112979 | ANTENNA DEVICE AND COMMUNICATION TERMINAL APPARATUS - An antenna device includes a first antenna element that resonates with a first resonant frequency, a second antenna element that resonates with a second resonant frequency, a first frequency stabilizing circuit connected to a feeding end of the first antenna element, and a second frequency stabilizing circuit connected to a feeding end of the second antenna element. The first antenna element and the second antenna element can be arranged along two sides of a case of a communication terminal apparatus, for example. | 05-10-2012 |
20120127049 | FREQUENCY STABILIZATION CIRCUIT, FREQUENCY STABILIZATION DEVICE, ANTENNA APPARATUS AND COMMUNICATION TERMINAL EQUIPMENT, AND IMPEDANCE CONVERSION ELEMENT - A frequency stabilization device includes a first radiating element, a second radiating element, a feeding circuit connected to the first and second radiating elements, and a frequency stabilization circuit disposed between the feeding circuit and the first radiating element. The frequency stabilization circuit includes a primary-side series circuit connected to the feeding circuit and a secondary-side series circuit coupled to the primary-side series circuit via an electric field or a magnetic field. A first inductance element and a second inductance element are connected in series to each other, and a third inductance element and a fourth inductance element are connected in series to each other. The first and third inductance elements are coupled to each other, and the second and fourth inductance elements are coupled to each other. | 05-24-2012 |
20120133458 | SIGNAL LINE - A signal line that can be easily bent and significantly reduces loss generated in a high-frequency signal includes a main body including a plurality of insulating sheets made of a flexible material and stacked on each other in a stacking direction. Ground conductors are provided in the main body on the positive z-axis direction side of a signal line. The ground conductors have a slit S formed therein that overlaps the signal line when viewed in plan from the z-axis direction. A ground conductor is provided in the main body on the negative z-axis direction side of the signal line, and is overlapped by the signal line when viewed in plan from the z-axis direction. The ground conductors and the signal line define a strip line structure. A distance between the ground electrodes and the signal line is smaller than a distance between the ground electrode and the signal line. | 05-31-2012 |
20120138340 | MULTILAYER SUBSTRATE - A multilayer substrate that retains a curved state without causing fluctuations in electrical characteristics includes a main body including a plurality of insulating sheets to be stacked and made of a flexible material. A signal wire extends in the main body. A ground conductor is provided at a positive-direction side in a z-axis direction relative to the signal wire in the main body, and overlaps the signal line in a plan view seen from the z-axis direction. A ground conductor is provided on a negative-direction side in the z-axis direction relative to the signal wire in the main body, and overlaps the signal line in a plan view seen from the z-axis direction. The state in which the main body is curved so that the signal wire defines an arc is retained by plastic deformation of the ground conductors. | 06-07-2012 |
20120139814 | FREQUENCY STABILIZATION CIRCUIT, ANTENNA DEVICE, AND COMMUNICATION TERMINAL DEVICE - A frequency stabilization circuit includes four coiled conductors, the first coiled conductor and the second coiled conductor are connected in series to each other to define a first series circuit, the third coiled conductor and the fourth coiled conductor are connected in series to each other to define a second series circuit, the first series circuit is connected between an antenna port and a power feeding port, and the second series circuit is connected between the antenna port and the ground. The first coiled conductor and the second coiled conductor are wound so that a first closed magnetic circuit is provided, and the third coiled conductor and the fourth coiled conductor are wound so that a second closed magnetic circuit is provided. | 06-07-2012 |
20120153029 | ANTENNA, METHOD OF MANUFACTURING THE ANTENNA, AND WIRELESS IC DEVICE - An antenna includes first and second radiation portions including one lead wire that is folded back into a loop shape to define a folded-back portion and that includes a first power feed portion at a first end and a second power feed portion at a second end. The lead wire portion extending toward the folded-back portion and the lead wire portion extending through the folded-back portion are close enough to each other near each of the first and second power feed portions in the first and second radiation portions, respectively, to be electromagnetically coupled to each other. The power feed portions of the antenna are coupled to a wireless IC chip. The power feed portions may be coupled to a feed circuit in a feed circuit board coupled to a wireless IC. | 06-21-2012 |
20120169553 | ANTENNA AND WIRELESS IC DEVICE - An antenna includes two feeding points, and includes a loop-shaped loop electrode and an auxiliary electrode electrically connected to the loop electrode and located at a position along the outer circumference of the loop electrode. The first end portion of the auxiliary electrode is electrically connected to the vicinity of one feeding point of the loop electrode. The second end portion of the auxiliary electrode is open. A resonant circuit is defined by the auxiliary electrode and the loop electrode to enhance the impedance of the antenna, compared with a case in which the antenna is configured using the simple loop electrode, and it is easy to achieve impedance matching with the wireless IC. | 07-05-2012 |
20120176282 | ANTENNA DEVICE AND MOBILE COMMUNICATION TERMINAL - An antenna device includes a feeding member including a coil pattern and an emitting member to emit a transmit signal supplied from the feeding member and to receive a receive signal and supplying it to the feeding member. The emitting member includes an opening portion and a slit portion communicating with the opening portion. When seen in plan view from the direction of the winding axis of the coil pattern, the opening portion of the emitting member and the inner region of the coil pattern overlap each other, and the emitting member and the coil pattern overlap each other at least partially. | 07-12-2012 |
20120181068 | CIRCUIT SUBSTRATE AND METHOD OF MANUFACTURING SAME - A circuit substrate capable of reducing and preventing deviations of circuit characteristics includes a relatively hard region and a relatively soft region. A main body of the circuit substrate includes a stack of a plurality of flexible sheets made of a flexible material and includes rigid regions and a flexible region, the flexible region being more easily deformable than the rigid regions. Wiring conductors are disposed in the main body and define circuitry. Reinforcing insulative films are disposed so as to cover the portions where the wiring conductors are not disposed in the rigid regions on the flexible sheets when seen in plan view from the z-axis direction. | 07-19-2012 |
20120187198 | WIRELESS COMMUNICATION DEVICE AND METAL ARTICLE - A wireless communication device includes a wireless IC device, a dielectric substrate, and a metal plate. A radiation conductor coupled to the wireless IC device is provided on the front surface of the dielectric substrate, and a ground conductor connected to the radiation conductor through an interlayer connection conductor is provided on a back surface. The dielectric substrate is fixed to the metal plate via an insulating adhesive, and is crimped by a conductive member. The front and back surfaces of the metal plate are electrically connected to each other by the conductive member, and when a high-frequency signal is supplied from the wireless IC device, a high-frequency signal current on the front surface side of the metal plate is conducted to the back surface side of the metal plate through a surface boundary portion between the conductive member and the metal plate, and radiated as a high-frequency signal. | 07-26-2012 |
20120190310 | TRANSCEIVER AND RADIO FREQUENCY IDENTIFICATION TAG READER - In a transceiver, on a top surface of a rectangular plate-shaped substrate, transmission radiating elements and receiving radiating elements are provided. The transmission radiating elements extend in the horizontal or lateral direction from the center of the substrate. The receiving radiating elements extend in the vertical or longitudinal direction from the center of the substrate. Inductors included in a matching feeding element are individually electromagnetically coupled to transmission-side feeding points that are inner end portions of the transmission radiating elements and receiving-side feeding points that are inner end portions of the receiving radiating elements. A transmission signal is transmitted with a wave polarized in the horizontal or lateral direction, and a signal having a vertical or longitudinal polarization direction is received. | 07-26-2012 |
20120218165 | ANTENNA-MATCHING DEVICE, ANTENNA DEVICE AND MOBILE COMMUNICATION TERMINAL - An antenna-matching device includes a first antenna terminal that is connected to a first radiating element, a second antenna terminal that is connected to a second radiating element, power feeding terminals and that are connected to a power-feeding unit C, an antenna coupling circuit (coupling inductance element L) that is connected in series between the antenna terminals, and a matching unit B that is connected between the antenna terminals and the power feeding terminals. The coupling inductance element L and the matching unit are integrally provided in a substrate. The matching circuit B is connected in series with the signal lines and includes a first resonant circuit and a second resonant circuit that have different resonant frequencies from each other and are coupled with each other. The matching unit B is connected to a power-feeding circuit that includes an RF circuit. | 08-30-2012 |
20120223149 | ANTENNA AND RFID DEVICE - In an antenna for an RFID device, a feed coil is coupled to a first booster coil and a second booster coil through an electromagnetic field. In the feed coil, a first region and a second region are disposed so as to overlap with the first booster coil and the second booster coil, respectively. The first region of the feed coil is coupled to the first booster coil through an electromagnetic field, and the second region of the feed coil is coupled to the second booster coil through an electromagnetic field. Accordingly, the antenna has a high degree of coupling between the feed coil and a booster antenna and superior transmission efficiency of an RF signal, and prevents the occurrence of a null point. | 09-06-2012 |
20120267438 | WIRELESS IC DEVICE AND COMPONENT FOR WIRELESS IC DEVICE - A wireless IC device includes a cutout portion having no aluminum-deposited film that is provided at an end of an article package made of an aluminum-deposited laminated film, and an electromagnetic coupling module is provided at the cutout portion. The electromagnetic coupling module and the aluminum-deposited film of the package define a wireless IC device. A loop electrode, which is a magnetic field transmission auxiliary radiator of the electromagnetic coupling module, is coupled to the aluminum-deposited film of the package. Thus, the article package functions as a radiator of an antenna. | 10-25-2012 |
20120274423 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE - A flexible high-frequency signal transmission line includes a dielectric body including laminated flexible dielectric layers. A signal line is provided in the dielectric body. A grounding conductor is arranged in the dielectric body to be opposed to the signal line via one of the dielectric layers. The grounding conductor is of a ladder structure including a plurality of openings and a plurality of bridges arranged alternately along the signal line. A characteristic impedance of the signal line changes between two adjacent ones of the plurality of bridges such that the characteristic impedance of the signal line rises from a minimum value to an intermediate value and to a maximum value and falls from the maximum value to the intermediate value and to the minimum value in this order. | 11-01-2012 |
20120274431 | TRANSFORMER HAVING HIGH DEGREE OF COUPLING, ELECTRONIC CIRCUIT, AND ELECTRONIC DEVICE - A transformer having a high degree of coupling is connected between, for example, an antenna element and a power feed circuit. The transformer having a high degree of coupling includes a first inductance element connected to the power feed circuit and a second inductance element coupled to the first inductance element. A first end of the first inductance element is connected to the power feed circuit and a second end of the first inductance element is connected to the antenna element. A first end of the second inductance element is connected to the antenna element and a second end of the second inductance element is grounded. | 11-01-2012 |
20120306714 | ANTENNA APPARATUS AND COMMUNICATION TERMINAL - An antenna apparatus includes a power supply coil, a booster electrode sheet, a magnetic sheet, and a ground substrate arranged in this order from the top. The power supply coil includes a spiral coil conductor located on a flexible substrate. The booster electrode sheet includes a booster electrode located on an insulating substrate. The booster electrode includes a conductor region covering the coil conductor, a conductor aperture covering a coil window, and a slit portion connecting the outer edge of the conductor region and the conductor aperture in plan view. The magnetic sheet covers the booster electrode sheet so that the magnetic sheet covers a region slightly larger than a region including the conductor aperture and the slit portion of the booster electrode. | 12-06-2012 |
20120325915 | RADIO COMMUNICATION DEVICE AND RADIO COMMUNICATION TERMINAL - A radio communication device includes a radio frequency IC chip configured to process a radio signal, a feeding circuit board that is coupled to the radio frequency IC chip and includes a loop electrode including coil patterns having a predetermined winding width, and an antenna pattern that is magnetically coupled to the loop electrode. The feeding circuit board is arranged so that, in plan view, a first region of the loop electrode in which the coil patterns extend in a first direction overlaps the antenna pattern and a second region of the loop electrode in which the coil patterns extend in a second direction opposite to the first direction do not overlap the antenna pattern. The first direction and a line length direction of the antenna pattern are the same or substantially the same. | 12-27-2012 |
20120325916 | RFID MODULE AND RFID DEVICE - An RFID module includes an RFIC element, a filter circuit, a matching circuit, and a radiating element. The filter circuit and the matching circuit define an RFID device. The filter circuit includes a first inductance element, a second inductance element, and a capacitor. The first inductance element and the second inductance element are of equal inductance, and are strongly magnetically coupled to each other so as to strengthen magnetic fluxes to each other. With this configuration, an RFID module and an RFID device that include a filter circuit to remove harmonic components of the RFIC element but are not large as a whole are constructed. | 12-27-2012 |
20120326931 | WIRELESS COMMUNICATION MODULE AND WIRELESS COMMUNICATION DEVICE - A wireless communication module and a wireless communication device that are less likely to become detached even when attached to a flexible base substrate and have a reduced height includes a flexible multilayer substrate including a plurality of stacked flexible base materials and a cavity provided therein, a wireless IC chip arranged in the cavity, and a sealant filled in the cavity so as to cover the wireless IC chip. The sealant is a material that is harder than the flexible base materials. The flexible multilayer substrate includes a loop-shaped electrode defined by coil patterns. The loop-shaped electrode is electrically connected to the wireless IC chip. | 12-27-2012 |
20130002513 | ANTENNA AND WIRELESS COMMUNICATION DEVICE - An antenna and a wireless communication device which are suitable for an RFID system and in which radiation characteristics are prevented from being changed as a result of impedance adjustment are configured such that the antenna includes a first loop electrode that has an external shape of a regular polygon or circle and that includes a pair of open ends, feeding portions arranged inside the first loop electrode, a second loop electrode connected to the feeding portions, and a coupling electrode that couples the first loop electrode and the second loop electrode to each other. The wireless communication device is obtained by coupling the wireless communication element which processes a high-frequency signal to the feeding portions. | 01-03-2013 |
20130038501 | ANTENNA MODULE - In an antenna module, a main portion includes a plurality of insulating sheets made of a flexible material and laminated on each other. An antenna configured to transmit/receive a high-frequency signal is disposed in the main portion. A connection portion is disposed in the main portion and is connected to an electronic device that inputs/outputs the high-frequency signal. A signal transmission line is disposed in the main portion and has a strip line structure or a microstrip line structure to transmit the high-frequency signal. An impedance matching circuit is disposed in the main portion and between the antenna and end of a signal transmission line facing in a negative x direction. An impedance matching circuit is disposed in the main portion and between the connection portion and an end of the signal transmission line facing in a positive x direction. | 02-14-2013 |
20130049730 | DC-DC CONVERTER - A DC-DC converter includes an insulating substrate with an inductor provided on the top surface thereof, a switching control IC provided therein, and a ground electrode pattern provided on the bottom surface thereof. The ground electrode pattern includes a first pattern and a second pattern separated from each other and a bridge pattern that connects the first and second patterns to each other. A capacitor and the switching control IC is connected to each of the first and second patterns. The bridge pattern faces the inductor and has a smaller width than that of the first and second patterns. | 02-28-2013 |
20130087626 | WIRELESS COMMUNICATION DEVICE AND METAL ARTICLE - A wireless communication device includes a wireless IC device, a dielectric substrate, and a metal plate. A radiation conductor coupled to the wireless IC device is provided on the front surface of the dielectric substrate, and a ground conductor connected to the radiation conductor through an interlayer connection conductor is provided on a back surface. The dielectric substrate is fixed to the metal plate via an insulating adhesive, and is crimped by a conductive member. The front and back surfaces of the metal plate are electrically connected to each other by the conductive member, and when a high-frequency signal is supplied from the wireless IC device, a high-frequency signal current on the front surface side of the metal plate is conducted to the back surface side of the metal plate through a surface boundary portion between the conductive member and the metal plate, and radiated as a high-frequency signal. | 04-11-2013 |
20130099353 | ESD PROTECTION DEVICE - An ESD protection device includes a semiconductor substrate including input/output electrodes and a rewiring layer provided on a surface of the semiconductor substrate. An ESD protection circuit is provided on or in an outer layer of the semiconductor substrate, and the input/output electrodes are connected to the ESD protection circuit. The rewiring layer includes interlayer wiring lines, in-plane wiring lines, and post electrodes. First ends of the interlayer wiring lines disposed in the thickness direction are connected to the input/output electrodes disposed on the surface of the semiconductor substrate, and second ends of the interlayer wiring lines are connected to first ends of the in-plane wiring lines routed in plan view. Prismatic post electrodes are provided between second ends of the in-plane wiring lines and terminal electrodes. | 04-25-2013 |
20130127560 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE - Unwanted radiation is reduced in a high-frequency signal transmission line that includes a ground conductor provided with an opening that overlaps a signal line. A dielectric element assembly has a relative dielectric constant ∈ | 05-23-2013 |
20130127573 | COMMUNICATION TERMINAL APPARATUS AND ANTENNA DEVICE - An antenna device which includes a coil conductor and a booster conductor. The coil conductor is defined by wound loop-shaped conductors and includes a first opening at a winding center and two ends connected to a feeding circuit. The booster conductor includes a coupling conductor portion and a frame-shaped radiation conductor portion. The coupling conductor portion includes a second opening overlapped at least partially by the first opening, is split in a portion thereof by a slit, and is electromagnetically coupled to the coil conductor. The frame-shaped radiation conductor portion includes a third opening and is connected to the coupling conductor portion. | 05-23-2013 |
20130140362 | ELECTRICAL PRODUCT - A wireless IC device processing a high-frequency signal is arranged in an electrical product main body, and an input-output terminal of the wireless IC device is coupled to at least a portion of a power cable externally extending from the electrical product main body | 06-06-2013 |
20130147581 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE AND ELECTRONIC APPARATUS - An easily bendable high-frequency signal transmission line includes a dielectric body including a protection layer and dielectric sheets laminated on each other, a surface and an undersurface. A signal line is a linear conductor disposed in the dielectric body. A ground conductor is disposed in the dielectric body, faces the signal line via the dielectric sheet, and continuously extends along the signal line. A ground conductor is disposed in the dielectric body, faces the ground conductor via the signal line sandwiched therebetween, and includes a plurality of openings arranged along the signal line. The surface of the dielectric body on the side of the ground conductor with respect to the signal line is in contact with a battery pack. | 06-13-2013 |
20130147675 | ANTENNA DEVICE AND COMMUNICATION TERMINAL APPARATUS - An antenna device includes an antenna coil including a first conductive pattern disposed on a first major surface of a magnetic sheet, a second conductive pattern disposed on a first major surface of a non-magnetic sheet, and an interlayer conductor connecting the first conductive pattern and second conductive pattern. The antenna coil including the first conductive pattern and second conductive pattern defines a spiral or substantially spiral pattern. The antenna device is a resin multilayer structure in which its base body is a laminate of the magnetic layer and non-magnetic layer and the predetermined patterns are disposed inside and outside the laminate. | 06-13-2013 |
20130154388 | ANTENNA DEVICE AND MOBILE COMMUNICATION TERMINAL - An antenna device includes a feeding member including a coil pattern and an emitting member to emit a transmit signal supplied from the feeding member and to receive a receive signal and supplying it to the feeding member. The emitting member includes an opening portion and a slit portion communicating with the opening portion. When seen in plan view from the direction of the winding axis of the coil pattern, the opening portion of the emitting member and the inner region of the coil pattern overlap each other, and the emitting member and the coil pattern overlap each other at least partially. | 06-20-2013 |
20130154783 | HIGH-FREQUENCY TRANSFORMER, HIGH-FREQUENCY COMPONENT, AND COMMUNICATION TERMINAL DEVICE - In a high frequency transformer, when a current flows between input-output ports, a magnetic flux produced by first and third coil conductor patterns of a primary coil is interlinked with a second coil conductor pattern of a secondary coil. A magnetic flux produced by the second coil conductor pattern of the primary coil is interlinked with the first and third coil conductor patterns of the secondary coil. The coil conductor patterns are wound so that when a current flows through a transformer, the directions of magnetic fields occurring within the first and third coil conductor patterns of the primary coil and the second coil conductor pattern of the secondary coil are the same and the directions of magnetic fields occurring within the first and third coil conductor patterns of the secondary coil and the second coil conductor pattern of the primary coil are the same. | 06-20-2013 |
20130168837 | ESD PROTECTION DEVICE - An ESD protection device includes a semiconductor substrate including input/output electrodes and a rewiring layer located on the top surface of the semiconductor substrate. An ESD protection circuit is provided in the top layer of the semiconductor substrate, and the input/output electrodes are connected to the ESD protection circuit. The rewiring layer includes interlayer wiring lines, in-plane wiring lines, and post-shaped electrodes. First ends of the interlayer wiring lines provided in the thickness direction are connected to the input/output electrodes provided on the top surface of the semiconductor substrate and the second ends are connected to first ends of the in-plane wiring lines extending in the plane direction. The distance between the centers of the first and second post-shaped electrodes is larger than the distance between the centers of the first and second input/output electrodes. | 07-04-2013 |
20130181876 | ANTENNA DEVICE AND COMMUNICATION TERMINAL APPARATUS - An antenna device that includes coil antennas each having a coil conductor wound around a winding axis and a planar conductor including a surface and an edge end portion, the surface extending along the winding axis of the coil conductor, the edge end portion being adjacent to a coil opening of the coil conductor. A current flowing through the coil conductor induces a current in the planar conductor, this current produces a magnetic flux in a direction normal to the planar conductor, and thus the planar conductor acts as a booster antenna. The antenna device has directivity in the direction normal to the planar conductor because the magnetic flux produced by the coil antennas and that produced by the planar conductor are combined. This enables the antenna device to occupy a small area while achieving a predetermined communication distance. | 07-18-2013 |
20130207740 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE AND ELECTRONIC APPARATUS INCLUDING THE SAME - A high-frequency signal transmission line includes a body; a signal line including a first line portion provided to a first layer of the body, a second line portion provided to a second layer of the body alternately being connected; and a first ground conductor provided to the first layer or a third layer positioned on an opposite side of the second layer relative to the first layer, and also overlaid with a plurality of second line portions in planar view from a normal direction of a principal surface of the body, and also not overlaid with a plurality of the first line portions. A property impedance of the first line portion and a property impedance of the second line portion are different from each other. | 08-15-2013 |
20130214049 | WIRELESS IC DEVICE AND COMPONENT FOR WIRELESS IC DEVICE - A wireless IC device includes a cutout portion having no aluminum-deposited film that is provided at an end of an article package made of an aluminum-deposited laminated film, and an electromagnetic coupling module is provided at the cutout portion. The electromagnetic coupling module and the aluminum-deposited film of the package define a wireless IC device. A loop electrode, which is a magnetic field transmission auxiliary radiator of the electromagnetic coupling module, is coupled to the aluminum-deposited film of the package. Thus, the article package functions as a radiator of an antenna. | 08-22-2013 |
20130229319 | ANTENNA DEVICE AND COMMUNICATION TERMINAL APPARATUS - An antenna device includes a base including a planar conductor disposed thereon, and a coil antenna. The coil antenna includes a coil conductor wound around a magnetic core. The coil antenna is arranged such that a coil opening of the coil conductor is closed to an edge of the planar conductor. A current passing through the coil conductor induces a current in the planar conductor. Thus, a first magnetic flux occurs in the coil antenna, and a second magnetic flux occurs in the planar conductor. Therefore, a third magnetic flux occurs in an area of the planar conductor. Accordingly, the antenna device achieves a small footprint, a small-sized communication terminal apparatus and a desired communication distance. | 09-05-2013 |
20130249767 | FREQUENCY STABILIZATION CIRCUIT, ANTENNA DEVICE, AND COMMUNICATION TERMINAL APPARATUS - A frequency stabilization circuit includes a primary side circuit connected to a feeder circuit, and a secondary side circuit electromagnetically coupled to the primary side circuit. The primary side circuit is a series circuit including a first coiled conductor and a second coiled conductor, and the secondary side circuit is a series circuit including a third coiled conductor and a fourth coiled conductor. An antenna element is connected through a high pass filter to a first antenna connection portion set as a connection point of the first coiled conductor and the second coiled conductor. Additionally, the antenna element is connected through a low pass filter to a second antenna connection portion set as a connection point between the second coiled conductor and the fourth coiled conductor. | 09-26-2013 |
20130260803 | WIRELESS COMMUNICATION SYSTEM - A wireless communication system includes a plurality of communication devices, and a communication terminal that is a separate structure from the plurality of communication devices. Each of the communication devices includes a coupling portion to be coupled with the communication terminal, a power source, and a signal processing section arranged to process a signal received and a signal to be sent. The communication terminal includes neither a power source nor a signal processing section, and the communication terminal includes a coupling portion to be coupled with the coupling portion of each of the communication devices, an antenna arranged to send and receive radio waves, and a connector arranged to connect the coupling portion and the antenna to each other. | 10-03-2013 |
20130299219 | MULTILAYER CIRCUIT BOARD AND METHOD FOR MANUFACTURING THE SAME - The present invention provides a multilayer circuit board that includes a plurality of resin layers, conductive wiring layers, and via-hole conductors. Each of the resin layers includes a resin sheet containing a resin and a conductive wiring layer disposed on at least one surface of the resin sheet. The via-hole conductors contain an intermetallic compound having a melting point of 300° C. or more produced by a reaction between a first metal composed of Sn or an alloy containing 70% by weight or more Sn and a second metal composed of a Cu—Ni alloy or a Cu—Mn alloy. The second metal has a higher melting point than the first metal. | 11-14-2013 |
20130300515 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE AND ELECTRONIC APPARATUS - An easily bendable high-frequency signal transmission line includes a dielectric body including a protection layer and dielectric sheets laminated on each other, a surface and an undersurface. A signal line is a linear conductor disposed in the dielectric body. A ground conductor is disposed in the dielectric body, faces the signal line via the dielectric sheet, and continuously extends along the signal line. A ground conductor is disposed in the dielectric body, faces the ground conductor via the signal line sandwiched therebetween, and includes a plurality of openings arranged along the signal line. The surface of the dielectric body on the side of the ground conductor with respect to the signal line is in contact with a battery pack. | 11-14-2013 |
20130300516 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE AND ELECTRONIC APPARATUS - An easily bendable high-frequency signal transmission line includes a dielectric body including a protection layer and dielectric sheets laminated on each other, a surface and an undersurface. A signal line is a linear conductor disposed in the dielectric body. A ground conductor is disposed in the dielectric body, faces the signal line via the dielectric sheet, and continuously extends along the signal line. A ground conductor is disposed in the dielectric body, faces the ground conductor via the signal line sandwiched therebetween, and includes a plurality of openings arranged along the signal line. The surface of the dielectric body on the side of the ground conductor with respect to the signal line is in contact with a battery pack. | 11-14-2013 |
20130307746 | ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE - An antenna device includes a feed coil and a sheet conductor. The feed coil includes a magnetic core and a coil-shaped conductor, which is provided around the magnetic core. An RFIC is connected to the feed coil. The sheet conductor has a larger area than the feed coil. A slit that extends from a portion of the edge of the sheet conductor toward the inner side of the sheet conductor is provided in the sheet conductor. The feed coil is arranged such that the direction of the axis around which the feed coil is disposed is parallel or substantially parallel to the directions in which the sheet conductor extends. The feed coil is arranged such that the feed coil is close to the slit and one of coil openings at the ends of the feed coil faces the slit. | 11-21-2013 |
20130321091 | NON-RECIPROCAL CIRCUIT DEVICE AND RADIO COMMUNICATION TERMINAL DEVICE - A non-reciprocal circuit device includes a magnetic core, a permanent magnet that applies a DC field to the magnetic core, a plurality of central conductors that are insulated from each other and cross each other at a specified angle, and at least one subsidiary conductor that is arranged on the magnetic core adjacent to at least one of the central conductors. The subsidiary conductor is magnetically coupled with the central conductor adjacent thereto via the magnetic core. | 12-05-2013 |
20130333926 | CIRCUIT SUBSTRATE AND METHOD OF MANUFACTURING SAME - A circuit substrate capable of reducing and preventing deviations of circuit characteristics includes a relatively hard region and a relatively soft region. A main body of the circuit substrate includes a stack of a plurality of flexible sheets made of a flexible material and includes rigid regions and a flexible region, the flexible region being more easily deformable than the rigid regions. Wiring conductors are disposed in the main body and define circuitry. Reinforcing insulative films are disposed so as to cover the portions where the wiring conductors are not disposed in the rigid regions on the flexible sheets when seen in plan view from the z-axis direction. | 12-19-2013 |
20140001274 | RADIO IC DEVICE AND RADIO COMMUNICATION TERMINAL | 01-02-2014 |
20140003007 | FLAT CABLE AND ELECTRONIC APPARATUS | 01-02-2014 |
20140003011 | ELECTRIC ELEMENT-EMBEDDED MULTILAYER SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME | 01-02-2014 |
20140014733 | RADIO COMMUNICATION DEVICE - A radio communication device includes a flat radiation element including a loop with a first end and a second end; a feed element including a coil pattern connected to the first end of the loop; and a radio IC element connected to the coil pattern. The coil pattern is disposed near the loop and is wound such that an electric power supply to the coil pattern generates a current flow in the coil pattern and a current flow in the loop in a same direction. The coil pattern and the loop are connected in series and are coupled via a magnetic field. | 01-16-2014 |
20140027520 | ANTENNA DEVICE, RFID TAG, AND COMMUNICATION TERMINAL APPARATUS - An RFIC element includes a capacitance therein. By this capacitance and an inductance of a loop-shaped conductor, an LC resonant circuit is provided. When UHF-band high-frequency power is supplied to the loop-shaped conductor from the RFIC element, the loop-shaped conductor is coupled to a flat conductor in an electromagnetic field by a current flowing through the loop-shaped conductor, and induced currents flow through the flat conductor. By propagation of the induced currents through the flat conductor, the flat conductor acts as a radiation element. It is preferred that the dimension in the longitudinal direction of the flat conductor be a half wavelength of the used frequency band. Accordingly, the flat conductor acts as a half-wave radiation element. | 01-30-2014 |
20140035793 | ANTENNA DEVICE AND COMMUNICATION TERMINAL APPARATUS - An antenna device includes a body and first and second coil antennas. Each coil conductor of the first and second coil antennas is provided at least one of inside and on a surface of the body. The first coil antenna includes a winding axis intersecting at least one side surface of the body. The second coil antenna includes a winding axis intersecting first and second main surfaces of the body. | 02-06-2014 |
20140048312 | SIGNAL LINE AND CIRCUIT SUBSTRATE - A signal line is a linear conductor provided within a laminated body. A first ground conductor is provided on a positive direction side in a z axis direction within the laminated body, compared with the signal line, and overlaps with the signal line in a planar view seen from the z axis direction. A second ground conductor is provided on a negative direction side in the z axis direction within the laminated body, compared with the signal line, and overlaps with the signal line in the planar view seen from the z axis direction. Via hole conductors connect the ground conductors to each other. In the first ground conductor, a plurality of opening portions are arranged along the signal line in the planar view seen from the z axis direction. The via hole conductors are provided between the opening portions adjacent to one another, in an x axis direction. | 02-20-2014 |
20140049440 | COUPLING DEGREE ADJUSTMENT CIRCUIT, ANTENNA DEVICE, AND WIRELESS COMMUNICATION DEVICE - A dielectric body includes a first radiating element on a first side and a second radiating element on a second side. The first radiating element and the second radiating element are linear conductors that each extend from a first end to a second end (an open end), and are parallel or substantially parallel to each other in a direction from the first end to the second end. The first end of the first radiating element is connected to a first port of a coupling degree adjustment circuit, and the first end of the second radiating element is connected to a second port of the coupling degree adjustment circuit. The first radiating element and the second radiating element are mainly coupled to each other in the coupling degree adjustment circuit. | 02-20-2014 |
20140055209 | FRONT-END CIRCUIT AND COMMUNICATION TERMINAL APPARATUS - A front-end circuit includes a diplexer and an impedance conversion circuit. The diplexer includes a feeding side common port through which a high-frequency signal in a high band and a high-frequency signal in a low band are input and output, a first port through which a high-frequency signal in a high band is input and output, and a second port through which a high-frequency signal in a low band is input and output, and demultiplexes or multiplexes the high-frequency signal in a low band and the high-frequency signal in a high band. The impedance conversion circuit is connected between the second port of the diplexer and an antenna port. The first port of the diplexer is directly connected to the antenna port through a transmission line. | 02-27-2014 |
20140062817 | IMPEDANCE-MATCHING SWITCHING CIRCUIT, ANTENNA DEVICE, HIGH-FREQUENCY POWER AMPLIFYING DEVICE, AND COMMUNICATION TERMINAL APPARATUS - An antenna device includes an impedance-matching switching circuit connected to a feeding circuit, and a radiating element. The impedance-matching switching circuit matches the impedance of the radiating element as a second high frequency circuit element and the impedance of the feeding circuit as a first high frequency circuit element. The impedance-matching switching circuit includes a transformer matching circuit and a series active circuit. The transformer matching circuit matches the real parts of the impedance and matches the imaginary parts of the impedance in the series active circuit. Thus, impedance matching is performed over a wide frequency band at a point at which high frequency circuits or elements having different impedances are connected to each other. | 03-06-2014 |
20140062827 | ANTENNA DEVICE AND WIRELESS DEVICE - An RFID tag includes an antenna element and a feed device. The antenna element includes a base sheet and a coil conductor on the upper surface thereof. The feed device includes a feed element and an RFIC. The feed element includes a base sheet and a first coil conductor and a second coil conductor on the upper surface of the base sheet. The first coil conductor and the second coil conductor are arranged on the base sheet such that magnetic flux generated in the first coil conductor and the second coil conductor constitutes a closed magnetic circuit. The feed device is adhered to a coupling portion of the antenna element. As a result, the RFIC is strongly coupled to the antenna element. | 03-06-2014 |
20140065980 | IMPEDANCE CONVERSION CIRCUIT AND COMMUNICATION TERMINAL APPARATUS - In an impedance conversion circuit, since, in a low band, an absolute value of impedance of a primary side coil is smaller than an absolute value of impedance of a capacitor, a high-frequency signal in a low band propagates through a transformer. Thus, impedance matching of a high-frequency signal in a low band is performed by the transformer. Since, in a high band, the absolute value of the impedance of the capacitor is smaller than the absolute value of the impedance of the primary side coil, a high-frequency signal in a high band propagates through the capacitor. Thus, impedance matching of a high-frequency signal in a high band is performed in the capacitor. Accordingly, impedance matching between a high frequency circuit and an antenna element is performed in a wide frequency band. | 03-06-2014 |
20140078014 | ANTENNA DEVICE AND COMMUNICATION TERMINAL APPARATUS - An antenna device includes an antenna element and an impedance conversion circuit connected to the antenna element. The impedance conversion circuit is inserted between the antenna element and a feeding circuit, and includes a first series circuit where a first coil conductor and a second coil conductor are connected in series, and a second series circuit where a third coil conductor and a fourth coil conductor are connected in series. The first and second coil conductors define a closed magnetic circuit through which a closed loop of a first magnetic flux passes, and the third and fourth coil conductors define a closed magnetic circuit through which a closed loop of a second magnetic flux passes. Consequently, the antenna device performs impedance matching with the feeding circuit in a wide frequency band. | 03-20-2014 |
20140091971 | COMMUNICATION TERMINAL DEVICE AND MANUFACTURING METHOD THEREOF - A communication terminal device includes a printed wiring board disposed in a casing, a feed pattern provided on a main surface of the printed wiring board, a radiation plate including a substantially planar radiation portion substantially perpendicular to the main surface of the printed wiring board and a lead portion connecting the radiation portion to the feed pattern, and a component mounted on the main surface of the printed wiring board to overlap the lead portion when the main surface of the printed wiring board is viewed from above, the component including a conductive material, a magnetic material and/or a dielectric material. The radiation portion is connected to the lead portion at a side spaced away from the main surface of the printed wiring board, and an area of the lead portion is located at a predetermined distance from the main surface of the printed wiring board. | 04-03-2014 |
20140097916 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE - Unwanted radiation is reduced in a high-frequency signal transmission line that includes a ground conductor provided with an opening that overlaps a signal line. A dielectric element assembly has a relative dielectric constant ∈ | 04-10-2014 |
20140117099 | WIRELESS IC DEVICE COMPONENT AND WIRELESS IC DEVICE - A wireless IC device includes a wireless IC chip, a coupling electrode, and a radiation plate. The coupling electrode includes coupling portions arranged to be coupled to the wireless IC chip and a pair of opposing ends. The pair of opposing ends are capacitively coupled to each other and oppose the radiation plate to be coupled to the radiation plate. The wireless IC chip uses the radiation plate as an antenna to transmit and receive signals having certain frequencies to and from an RFID system. | 05-01-2014 |
20140125426 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE AND ELECTRONIC APPARATUS - An easily bendable high-frequency signal transmission line includes a dielectric body including a protection layer and dielectric sheets laminated on each other, a surface and an undersurface. A signal line is a linear conductor disposed in the dielectric body. A ground conductor is disposed in the dielectric body, faces the signal line via the dielectric sheet, and continuously extends along the signal line. A ground conductor is disposed in the dielectric body, faces the ground conductor via the signal line sandwiched therebetween, and includes a plurality of openings arranged along the signal line. The surface of the dielectric body on the side of the ground conductor with respect to the signal line is in contact with a battery pack. | 05-08-2014 |
20140125434 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE AND ELECTRONIC APPARATUS - An easily bendable high-frequency signal transmission line includes a dielectric body including a protection layer and dielectric sheets laminated on each other, a surface and an undersurface. A signal line is a linear conductor disposed in the dielectric body. A ground conductor is disposed in the dielectric body, faces the signal line via the dielectric sheet, and continuously extends along the signal line. A ground conductor is disposed in the dielectric body, faces the ground conductor via the signal line sandwiched therebetween, and includes a plurality of openings arranged along the signal line. The surface of the dielectric body on the side of the ground conductor with respect to the signal line is in contact with a battery pack. | 05-08-2014 |
20140145906 | ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE - An antenna device includes a first coil antenna and a second coil antenna. The first coil antenna includes a coil conductor having a rectangular or substantially rectangular spiral shape and located on a non-magnetic insulating base member. The second coil antenna includes two coil conductors located on a non-magnetic insulating base member. The two coil conductors are disposed and wound such that loops of a magnetic field that is generated by applying a current to the two coil conductors are perpendicular or substantially perpendicular to a coil axis of the coil conductors. | 05-29-2014 |
20140166344 | MULTILAYER SUBSTRATE - A multilayer substrate that retains a curved state without causing fluctuations in electrical characteristics includes a main body including a plurality of insulating sheets to be stacked and made of a flexible material. A signal wire extends in the main body. A ground conductor is provided at a positive-direction side in a z-axis direction relative to the signal wire in the main body, and overlaps the signal line in a plan view seen from the z-axis direction. A ground conductor is provided on a negative-direction side in the z-axis direction relative to the signal wire in the main body, and overlaps the signal line in a plan view seen from the z-axis direction. The state in which the main body is curved so that the signal wire defines an arc is retained by plastic deformation of the ground conductors. | 06-19-2014 |
20140176264 | HIGH-FREQUENCY SIGNAL LINE AND ELECTRONIC DEVICE INCLUDING THE SAME - A high-frequency signal line includes a dielectric element body including regions and a plurality of flexible dielectric sheets. A signal conductive layer is provided in or on the dielectric element body. Ground conductive layers are provided in or on the dielectric element body and face the signal conductive layer. A distance between the ground conductive layer and the signal conductive layer in the region is smaller than a distance between the ground conductive layer and the signal conductive layer in the regions. The dielectric element body is bent in the region. | 06-26-2014 |
20140176265 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE AND ELECTRONIC DEVICE - A high-frequency signal transmission line includes a dielectric body including a stack of a plurality of dielectric layers, a linear signal line located in the dielectric body, a first ground conductor located at a first side of the signal line in a stacking direction and including a plurality of first openings arranged along the signal line, and a plurality of floating conductors located at the first side of the signal line in the stacking direction to overlap with the first openings, when viewed from the stacking direction, each of the floating conductors being not connected to any other conductors. | 06-26-2014 |
20140176266 | HIGH-FREQUENCY SIGNAL LINE AND ELECTRONIC DEVICE - A high-frequency signal line includes an element assembly including a plurality of flexible insulator layers, a linear signal line provided in or on the element assembly, a first ground conductor arranged in or on the element assembly so as to be opposed to the signal line not in a first section including a portion of the signal line but in a second section adjacent to the first section, and a second ground conductor provided along the signal line in the first section on the insulator layer on which the signal line is provided. The second ground conductor is not opposed at least in part to the first ground conductor in the first section. | 06-26-2014 |
20140176382 | ANTENNA DEVICE AND COMMUNICATION TERMINAL APPARATUS - An antenna device includes a feed coil connected to a feed circuit, and a coil antenna disposed near the feed coil. A ferrite sheet, in which a magnetic loss term in a usable frequency band is relatively large, is provided between the feed coil and the coil antenna. The feed coil and the coil antenna are magnetically coupled to each other via the ferrite sheet. With this configuration, signal transmission efficiency between the feed coil and the coil antenna is enhanced. | 06-26-2014 |
20140176383 | COIL ANTENNA DEVICE AND ANTENNA MODULE - In a coil antenna device, a multilayer structure includes non-magnetic sheets and magnetic sheets stacked on each other. A coil conductor is provided in the multilayer structure such that a portion of the magnetic material defines a magnetic core and such that a coil axis extends along a principle surface of the multilayer structure. The coil conductor includes a plurality of line conductors each of which extends on one principle surface side of the magnetic material, a plurality of line conductors each of which extends on the other principle surface side of the magnetic material, and a plurality of via-hole conductors extending in a thickness direction of the multilayer structure so as to be surrounded with the magnetic material. The plurality of via-hole conductors defines a coiled structure together with the line conductors. | 06-26-2014 |
20140184359 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE AND ELECTRONIC DEVICE - A high-frequency signal transmission line includes a flexible body including a plurality of insulating layers. A linear signal line is located in or on the body. A first ground conductor is located opposite to the signal line via at least one of the insulating layers. A second ground conductor extends along the signal line. An interlayer connection portion that connects the first ground conductor and the second ground conductor includes a plurality of interlayer connection conductors individually pierced in some of the insulating layers and connected to each other. The plurality of interlayer connection conductors includes two interlayer connection conductors that are pierced in adjacent ones of the insulating layers with respect to a layer-stacking direction and that have central axes located in different positions when viewed from the layer-stacking direction. | 07-03-2014 |
20140184360 | HIGH-FREQUENCY SIGNAL LINE AND ELECTRONIC DEVICE - A high-frequency signal line includes an element assembly including a plurality of insulator layers, a linear signal line provided in or on the element assembly, a first ground conductor provided in or on the element assembly and extending along the signal line, and a plurality of floating conductors provided in or on the element assembly on a first side in a direction of lamination relative to the signal line and the first ground conductor, so as to be arranged along the signal line in an orientation crossing the signal line when viewed in a plan view in the direction of lamination. The floating conductors are opposite to the signal line and the first ground conductor with at least one of the insulator layers positioned therebetween, the floating conductors being connected to neither the signal line nor the first ground conductor. A capacitance is created between the first ground conductor and each of the floating conductors, and has a greater value than a capacitance created between the signal line and the floating conductor. | 07-03-2014 |
20140184361 | HIGH FREQUENCY SIGNAL LINE AND ELECTRONIC DEVICE - A dielectric element assembly includes a plurality of stacked dielectric sheets. A signal line is provided in or on the dielectric element assembly. A ground conductor is provided in or on the dielectric element assembly on the negative direction side of a z-axis direction relative to the signal line and is arranged so as to oppose the signal line via the dielectric sheets. The ground conductor includes a main body portion and protruding portions. The main body portion extends along the signal line on one side of a direction perpendicular or substantially perpendicular to the signal line relative to the signal line when viewed in plan from the z-axis direction. The protruding portions protrude from the main body portion toward the signal line and overlap the signal line when viewed in plan from the z-axis direction. | 07-03-2014 |
20140184362 | HIGH-FREQUENCY SIGNAL LINE AND ELECTRONIC DEVICE - A high-frequency signal line includes an element assembly including a plurality of flexible insulator layers. a linear signal line provided in or on the element assembly, a first ground conductor provided in or on the element assembly and extending along the signal line, a plurality of second ground conductors provided in or on the element assembly and arranged at predetermined intervals in a direction in which the signal line extends, on a first side in a direction of lamination relative to the signal line, the second ground conductors being opposite to the signal line with at least one of the insulator layers positioned therebetween, and a plurality of first via-hole conductors extending through at least one of the insulator layers so as to connect the first and second ground conductors. | 07-03-2014 |
20140198011 | ANTENNA DEVICE AND WIRELESS COMMUNICATION APPARATUS - An antenna device includes a feeding coil antenna and a booster coil antenna electromagnetically coupled to the feeding coil antenna. The feeding coil antenna includes a plurality of coil portions including at least one magnetic body and each including a coil conductor wound around the at least one magnetic body. The plurality of coil portions are connected to one another in an in-phase mode, and are arranged near one another such that winding axes of the coil conductors are oriented approximately in the same direction and at least portions of respective openings of the coil conductors face one another. | 07-17-2014 |
20140203454 | SEMICONDUCTOR DEVICE AND SEMICONDUCTOR MODULE - A semiconductor device includes an analog integrated circuit and a digital integrated circuit provided on a major surface of a substrate. An analog ground terminal is provided for the analog integrated circuit, and digital ground terminals are provided for the digital integrated circuit. An analog ground layer is stacked on the substrate so as to face the analog integrated circuit, and digital ground layers are stacked on the substrate so as to face the digital integrated circuit. The analog ground terminal is connected to the analog ground layer, and the digital ground terminals are connected to the digital ground layers, respectively. | 07-24-2014 |
20140203981 | ANTENNA DEVICE AND COMMUNICATION TERMINAL DEVICE - An antenna device includes a first conductor plane and a second conductor plane that face each other. The first conductor plane and the second conductor plane are electrically continuous through a first connection conductor, a second connection conductor, and a chip capacitor. A power feed coil is disposed between the first conductor plane and the second conductor plane. The power feed coil includes a magnetic core and a coil conductor. The coil conductor defines a pattern such that the coil conductor winds around the magnetic core. The power feed coil is disposed at a position closer to the first connection conductor and magnetically couples with the first connection conductor. | 07-24-2014 |
20140203985 | COIL ANTENNA AND COMMUNICATION TERMINAL DEVICE - To ensure a sufficient communication distance and to concurrently suppress a conductor loss, a coil antenna includes a magnetic core including a first peripheral surface including at least a first principal surface, a first coil conductor located on the first principal surface and wound around a predetermined winding axis, a first base material layer stacked on the first principal surface, including at least a first surface parallel or substantially parallel to the first principal surface, and made of a material having a lower magnetic permeability than the magnetic core, and a second coil conductor located on at least the first surface. Opposite ends of the second coil conductor are coupled to the first coil conductor on the first principal surface, and a direction in which a current flows through the first coil conductor on the first principal surface is substantially the same as a direction in which a current flows through the second coil conductor on the first surface. | 07-24-2014 |
20140203986 | ANTENNA DEVICE ANTENNA MODULE - An antenna device includes a multilayer body as a base body, an antenna coil, and a capacitor chip. The multilayer body includes a magnetic layer including a first main surface and a second main surface, a first non-magnetic layer provided on the first main surface of the magnetic layer, and a second non-magnetic layer provided on the second main surface of the magnetic layer. The antenna coil includes a first coil pattern provided with the first non-magnetic layer and a second coil pattern provided with the second non-magnetic layer. The capacitor chip is connected to the antenna coil and provided on the second non-magnetic layer. | 07-24-2014 |
20140203992 | ANTENNA DEVICE, FEED ELEMENT, AND COMMUNICATION TERMINAL DEVICE - An antenna device includes a conductor surface in which an opening having an open edge portion in communication with the outside is provided, a feed element including a first coil connected to the feed element and a second coil magnetically coupled to the first coil, a first mounting portion disposed in the open edge portion and connected to a first end of the second coil, and a second mounting portion disposed in the open edge portion in a state isolated from the first mounting portion and connected to a second end of the second coil. The first mounting portion and the conductor surface are directly or indirectly conducted to each other, and the second mounting portion and the conductor surface are directly or indirectly conducted to each other. A loop is defined around the opening through the first mounting portion, the second mounting portion, and the second coil. | 07-24-2014 |
20140231528 | ANTENNA, METHOD OF MANUFACTURING THE ANTENNA, AND WIRELESS IC DEVICE - An antenna includes first and second radiation portions including one lead wire that is folded back into a loop shape to define a folded-back portion and that includes a first power feed portion at a first end and a second power feed portion at a second end. The lead wire portion extending toward the folded-back portion and the lead wire portion extending through the folded-back portion are close enough to each other near each of the first and second power feed portions in the first and second radiation portions, respectively, to be electromagnetically coupled to each other. The power feed portions of the antenna are coupled to a wireless IC chip. The power feed portions may be coupled to a feed circuit in a feed circuit board coupled to a wireless IC. | 08-21-2014 |
20140232488 | FLAT CABLE - A flat cable includes a dielectric element assembly including a plurality of dielectric layers laminated on each other, a linear signal line provided in the dielectric element assembly, a first ground conductor provided on one side in a direction of lamination relative to the signal line and including a plurality of first openings arranged along the signal line, and a second ground conductor provided on the other side in the direction of lamination relative to the signal line and including a plurality of second openings arranged along the signal line. The first ground conductor is more distant from the signal line in the direction of lamination than is the second ground conductor. The first openings are larger than the second openings. | 08-21-2014 |
20140232501 | COMMON MODE CHOKE COIL AND HIGH-FREQUENCY ELECTRONIC DEVICE - A common mode choke coil includes a primary coil and a secondary coil, wherein the primary coil includes a first coil pattern and a second coil pattern connected in series to the first coil pattern, and the secondary coil includes a third coil pattern and a fourth coil pattern connected in series to the third coil pattern. The first and third coil patterns are concentrically wound, as parallel or substantially parallel lines, in loop shapes on one surface, and the second and fourth coil patterns are concentrically wound, as parallel or substantially parallel lines, in loop shapes on the one surface with being adjacent to the first and third coil patterns. | 08-21-2014 |
20140262448 | HIGH-FREQUENCY SIGNAL LINE, METHOD FOR PRODUCING SAME, AND ELECTRONIC DEVICE - A high-frequency signal line includes a laminate of a plurality of insulator layers, a signal line provided on a first principal surface of one of the insulator layers, a first ground conductor provided on a second principal surface of the insulator layer provided with the signal line, the first ground conductor including openings that overlap with the signal conductor, and a second ground conductor provided in or on the laminate so as to be opposed to the first ground conductor with the signal conductor positioned therebetween. | 09-18-2014 |
20140266964 | IMPEDANCE CONVERSION DEVICE, ANTENNA DEVICE AND COMMUNICATION TERMINAL DEVICE - In a case in which a capacitor is not provided in parallel with a second inductance element, the impedance ratio between a first inductance element and the second inductance element is constant regardless of the frequency, but when a capacitor is provided, the parallel impedance of the capacitor and the second inductance element gradually increases at frequencies equal to and below the resonant frequency. Consequently, at frequencies equal to or below the resonant frequency, the higher the frequency becomes, the larger the value of the real portion of the impedance observed on a high-frequency-circuit side becomes. Therefore, by appropriately setting the values of the first inductance element, the second inductance element, and the capacitor, the frequency characteristics of the real portion of the impedance observed on the high-frequency-circuit side can be set to be similar to the frequency characteristics of the radiation resistance of the antenna. | 09-18-2014 |
20140273899 | COMMUNICATION DEVICE - An RFID device provided at a transmission and reception circuit processes an RFID carrier signal belonging to a band of about 902 MHz to about 928 MHz or about 865 MHz to about 868 MHz to execute near field radio communication. An RFIC provided at a transmission and reception circuit processes a GSM carrier signal belonging to a band of about 824 MHz to about 894 MHz or about 880 MHz to about 960 MHz to execute mobile communication. A filter circuit provided at the transmission and reception circuit takes the band of about 850 MHz to about 940 MHz where RFID carrier signals appear as the pass band, and takes the band greater than or equal to about 1.2 GHz where a harmonic wave component of GSM carrier signals appears as the attenuation band. | 09-18-2014 |
20140292449 | HIGH-FREQUENCY TRANSMISSION LINE AND ELECTRONIC DEVICE - A high-frequency transmission line includes a laminate including dielectric layers, a first signal line provided in the laminate, a second signal line provided in the laminate and positioned on a first side in a direction of lamination relative to the first signal line, so as to cross the first signal line when viewed in a plan view in the direction of lamination, a first ground conductor positioned on a second side in the direction of lamination relative to the first signal line, a second ground conductor positioned on the first side in the direction of lamination relative to the second signal line, and an intermediate ground conductor provided between the first and second signal lines in the direction of lamination, so as to overlap with crossing portions of the first and second lines when viewed in a plan view in the direction of lamination. An area of overlap of the first ground conductor with the first signal line is smaller than an area of overlap of the second ground conductor with the first signal line. An area of overlap of the second ground conductor with the second signal line is smaller than an area of overlap of the first ground conductor with the second signal line. | 10-02-2014 |
20140292450 | HIGH-FREQUENCY TRANSMISSION LINE AND ELECTRONIC DEVICE - A high-frequency transmission line includes a laminate including dielectric layers, a first signal line provided on one of the dielectric layers, a second signal line crossing the first signal line when viewed in a plan view in a direction of lamination, the second signal line being positioned on the same dielectric layer as the first signal line except for a crossing portion that crosses with the first signal line, and an intermediate ground conductor provided between the first and second signal lines in the direction of lamination, so as to overlap with crossing portions of the first and second signal lines when viewed in a plan view in the direction of lamination. | 10-02-2014 |
20140292586 | ANTENNA DEVICE, RFID TAG, AND COMMUNICATION TERMINAL APPARATUS - An RFIC element includes a capacitance therein. By this capacitance and an inductance of a loop-shaped conductor, an LC resonant circuit is provided. When UHF-band high-frequency power is supplied to the loop-shaped conductor from the RFIC element, the loop-shaped conductor is coupled to a flat conductor in an electromagnetic field by a current flowing through the loop-shaped conductor, and induced currents flow through the flat conductor. By propagation of the induced currents through the flat conductor, the flat conductor acts as a radiation element. It is preferred that the dimension in the longitudinal direction of the flat conductor be a half wavelength of the used frequency band. Accordingly, the flat conductor acts as a half-wave radiation element. | 10-02-2014 |
20140295921 | FLEXIBLE BOARD AND ELECTRONIC DEVICE - A flexible board includes a first sheet section including a first principal surface, a second sheet section including a second principal surface and provided in a different position from the first principal surface in a normal direction to the first principal surface, at least one first bent sheet section configured to connect ends of the first and second sheet sections, the first bent sheet section including a third principal surface not parallel to the first and second principal surfaces, and at least two second bent sheet sections each including a fourth principal surface and provided in different positions from the third principal surface in a normal direction to the third principal surface. The second bent sheet sections are positioned so as to sandwich the first bent sheet section therebetween when viewed in a plan view in the normal direction to the third principal surface. | 10-02-2014 |
20140299355 | FLAT CABLE AND ELECTRONIC DEVICE - A transmission line section of a flat cable includes a dielectric element including a signal conductor at an intermediate position of a thickness direction, a first ground conductor, and a second ground conductor. The first ground conductor includes elongated conductors that are spaced apart from each other in a width direction of the dielectric element, and extend in a longitudinal direction, and bridge conductors that connect the elongated conductors at spaced points along the longitudinal direction. A widened portion having a width larger than the width of the elongated conductors is located at the intermediate position between bridge conductors that are adjacent to each other along the longitudinal direction. The widened portion is configured to project in a direction in which the elongated conductors are opposed to each other. An interlayer connection conductor is located in the widened portion. The first ground conductor and the second ground conductor are connected by the interlayer connection conductor. | 10-09-2014 |
20140299374 | FLAT CABLE - A flat cable includes a base material including a signal conductor extending in a first direction, a first ground conductor, and a second ground conductor. The second ground conductor includes elongated conductors extending in the first direction, and bridge conductors that connect the elongated conductors at predetermined spacings along the first direction. The second ground conductor is connected with via-hole conductors at predetermined positions in two mutually opposite directions along the first direction with respect to each of the bridge conductors. Countercurrents generated from a plurality of countercurrent generation points do not flow to the first ground conductor via a common via-hole but flow to the first ground conductor individually via separate via-hole conductors. | 10-09-2014 |
20140300453 | WIRELESS COMMUNICATION APPARATUS AND ANTENNA DEVICE - A wireless communication apparatus includes a first communication system, and a second communication system configured to transmit a transmission signal in a communication frequency band which is the same or substantially the same as that of the first communication system and at an electric power which is stronger than that of a reception signal of the first communication system. The first communication system includes a feeder circuit having a resonant frequency, the resonant frequency being within the communication frequency band if a reception signal of the first communication system is input, and the resonant frequency being out of the communication frequency band if a transmission signal of the second communication system is input. | 10-09-2014 |
20140306787 | LAMINATED COMMON-MODE CHOKE COIL - In a common-mode choke coil, first annular conductors are helically defined from the lower layer to the upper layer, and first annular conductors are helically defined from the upper layer to the lower layer. Further, second annular conductors are helically defined from the lower layer to the upper layer, and second annular conductors are helically defined from the upper layer to the lower layer. The first annular conductors and the second annular conductors are disposed alternately in a lamination direction. The first annular conductors and the second annular conductors are disposed such that substantial portions of the annular conductors adjacent to each other in the layer direction do not overlap in a planar view. This structure achieves a compact common-mode choke coil with which the loss of normal-mode signals is small, and which is highly capable of removing common-mode noise. | 10-16-2014 |
20140319230 | ANTENNA MODULE - An antenna module includes an antenna element including coil patterns and via conductors coupling together two adjacent two coil patterns. At least one of the coil patterns has a spiral shape, is wound three or more turns parallel or substantially parallel to an outer edge of a principal surface of a multilayer body, includes a first partial pattern including an outer end portion, a second partial pattern extending parallel or substantially parallel with the first partial pattern and being adjacent to the first partial pattern with a first gap provided therebetween, and a third partial pattern extending parallel or substantially parallel with the second partial pattern and being adjacent to the second partial pattern with a second gap provided therebetween, the second gap being smaller than the first gap. | 10-30-2014 |
20140334087 | INFORMATION TERMINAL APPARATUS - An information terminal apparatus includes a flat plate-shaped conductive housing including a first principal surface, a second principal surface, and a side surface that connects the principal surfaces, and a display provided on the first principal surface. The conductive housing includes a slit extending from the first principal surface to the second principal surface. Near the slit, a power feeding coil coupled to an IC element for an HF-band RFID system is disposed. The power feeding coil is magnetically coupled to the conductive housing via the slit. Thus, the conductive housing is utilized as a radiation element of the HF-band RFID system. | 11-13-2014 |
20140335785 | INTERFACE UNIT AND COMPUTER - In an interface unit, a shield layer includes an aperture through which magnetic flux generated by a power feeding coil of an antenna passes. Since the antenna is smaller than the shield layer, the aperture is much smaller than the shield layer. Thus, noise constituted by electromagnetic waves that travel from inside to outside of a computer via an aperture provided in an upper surface cover is blocked. During communication, the antenna and the shield layer are electromagnetically coupled to each other, and the shield layer defines and functions as an antenna. This allows proper communication with a communication target. | 11-13-2014 |
20140340273 | ANTENNA APPARATUS - There is provided an antenna apparatus capable of stably communicating with a communication partner and increasing the maximum possible communication range even when the antenna apparatus is relatively smaller than an antenna in the communication partner and the two antennas are disposed in close proximity on the same axis. A magnetic flux passing through a coil aperture of an antenna coil passes through a conductor aperture of a conductive layer, but the magnetic flux does not pass through the conductive layer. Accordingly, the magnetic flux is diverted to a path in which the conductor aperture of the conductive layer is the inside and the outer edge of the conductive layer is the outside. As a result, the magnetic flux passing through the coil aperture of the antenna coil makes a relatively large loop and links the inside and the outside of a coil conductor in an antenna in a communication partner with the antenna apparatus. | 11-20-2014 |
20140368307 | COMMON MODE CHOKE COIL - In a common mode choke coil, electrodes of input/output terminals are located on a bottom surface of a bottom layer. First linear conductors and second linear conductors are located on base material layers. A primary coil includes the first linear conductors and via hole conductors. A secondary coil includes the second linear conductors and via hole conductors. In a plan view as seen from a direction of winding axes of the primary coil and the secondary coil, as for a plurality of first linear conductors and second linear conductors which are adjacent in a plan direction, there are provided a first region in which the second linear conductors are located between the first linear conductors, and a second region in which the first conductors are located between the second linear conductors. | 12-18-2014 |
20140376199 | LAMINATED MULTI-CONDUCTOR CABLE - A laminate body includes a plurality of dielectric sheets laminated together. A first ground conductor is provided in or on the laminate body. A second ground conductor is provided in or on the laminate body and located on a different layer from the first ground conductor. A signal line is provided between the ground conductors and with respect to a direction of lamination. A signal line is provided between the ground conductors and with respect to the direction of lamination and located closer to the second ground conductor than the signal line is, and the signal line has a portion extending along the signal line in a parallel-lines area when viewed from the direction of lamination. The first ground conductor has openings in the parallel-lines area, and the openings are arranged over the signal line when viewed from the direction of lamination. | 12-25-2014 |
20150022286 | HIGH-FREQUENCY SIGNAL LINE - A high-frequency signal line includes a base layer including first and second principal surfaces, a signal line provided on the first principal surface, a ground conductor provided on the first principal surface along the signal line, and a plurality of high-permittivity portions arranged along the signal line and in contact with a portion of both the signal line and the ground conductor, each of the high-permittivity portions having a higher specific permittivity than the base layer. | 01-22-2015 |
20150022288 | HIGH-FREQUENCY SIGNAL LINE - A high-frequency signal line includes a body with a first layer level and a second layer level; a signal line including a first line portion provided at the first layer level, a second line portion provided at the second layer level, and a first interlayer connection connecting the first line portion and the second line portion; a first ground conductor including a first ground portion provided at the first layer level; a second ground conductor including a second ground portion provided at the second layer level; and a second interlayer connection connecting the first ground portion and the second ground portion. A distance between the first interlayer connection and the second interlayer connection is not less than a maximum distance between the first line portion and the first ground portion and is not less than a maximum distance between the second line portion and the second ground portion. | 01-22-2015 |
20150022289 | HIGH-FREQUENCY SIGNAL LINE - A signal line includes a first line portion at a first layer level and a second line portion at a second layer level, which are connected by a first interlayer connection. A first ground portion at the first layer level includes end portions closer to the first line portion than an intermediate portion, and a second ground portion at the second layer level includes end portions closer to the second line portion than an intermediate portion. A second interlayer connection connects one of the end portions of the first ground portion and one of the end portions of the second ground portion. A distance between the first and second interlayer connections is less than a distance between the first line portion and the intermediate portion of the first ground portion and is less than a distance between the second line portion and the intermediate portion of the second ground portion. | 01-22-2015 |
20150024700 | TRANSMISSION LINE - A signal line conductor extends in a direction in which a signal propagates, and a dielectric, surrounding the signal line conductor, also extends in the direction in which the signal propagates. Conductive films that define and function as a ground conductor extend on a side surface of the dielectric in the direction in which the signal propagates. Furthermore, conductive films that define and function as a bridge conductor extend on a side surface of the dielectric in a direction across the direction in which the signal propagates, and thus connect the conductive films to each other. | 01-22-2015 |
20150036303 | HIGH-FREQUENCY SIGNAL TRANSMISSION LINE AND ELECTRONIC DEVICE - A high-frequency signal transmission line includes a dielectric element assembly including a plurality of dielectric layers laminated on each other, a linear signal line provided at the dielectric element assembly, and a first ground conductor provided on a first side in a direction of lamination relative to the signal line and including a plurality of openings arranged along the signal line. The dielectric layer positioned at an end of the first side in the direction of lamination includes an undulating portion provided on a first principal surface located on the first side in the direction of lamination, such that the undulating portion overlaps with the openings when viewed in a plan view in the direction of lamination. | 02-05-2015 |
20150042421 | LAMINATED FLAT CABLE AND METHOD FOR PRODUCING SAME - A laminated flat cable includes a laminate, a signal line for high-frequency signal transmission, a reference ground conductor, and an auxiliary ground conductor. The laminate includes a first base layer with first and second principal surfaces and a second base layer with third and fourth principal surfaces, and the second principal surface is opposed to the third principal surface. The signal line is located on the second principal surface. The reference ground conductor is located on the first principal surface and is opposite to the signal line. The auxiliary ground conductor is located on the third or fourth principal surface and is opposite to the signal line. The auxiliary ground conductor includes a plurality of openings arranged along the signal line. | 02-12-2015 |
20150048906 | HIGH-FREQUENCY SIGNAL LINE AND METHOD FOR PRODUCING BASE LAYER WITH SIGNAL LINE - A high-frequency signal line includes a first base layer having flexibility, a linear signal line provided on the first base layer and including a first line portion having a first width and a second line portion having a second width greater than the first width, and a first reinforcing conductor provided on the first base layer along the first line portion. | 02-19-2015 |
20150060555 | ANTENNA MODULE - An antenna module includes a base including two opposing mounting surfaces, an antenna coil provided on or in the base so as to define an opening, the antenna coil having a shape that is symmetrical or substantially symmetrical with respect to a reference plane, and an IC chip and a plurality of electronic components mounted on one of the mounting surfaces and electrically coupled to the antenna coil, the IC chip and the electronic components being arranged inside the opening when viewed in plan from a normal direction of the mounting surface. At least two of the plurality of electronic components are arranged so as to be symmetrical or substantially symmetrical to each other with respect to the reference plane when viewed in plan from the normal direction. | 03-05-2015 |
20150061146 | ESD PROTECTION DEVICE - An ESD protection device includes a semiconductor substrate including input/output electrodes and a rewiring layer located on the top surface of the semiconductor substrate. An ESD protection circuit is provided in the top layer of the semiconductor substrate, and the input/output electrodes are connected to the ESD protection circuit. The rewiring layer includes interlayer wiring lines, in-plane wiring lines, and post-shaped electrodes. First ends of the interlayer wiring lines provided in the thickness direction are connected to the input/output electrodes provided on the top surface of the semiconductor substrate and the second ends are connected to first ends of the in-plane wiring lines extending in the plane direction. The distance between the centers of the first and second post-shaped electrodes is larger than the distance between the centers of the first and second input/output electrodes. | 03-05-2015 |
20150072725 | HIGH-FREQUENCY SIGNAL LINE - A high-frequency signal line includes a dielectric laminate body including a first dielectric layer, an adhesive layer and a second dielectric layer laminated in this order from a first side to a second side in a direction of lamination. A linear signal line is fixed on a main surface of the adhesive layer. A main ground conductor is provided on a main surface of the dielectric layer. An auxiliary ground conductor is provided on the second dielectric layer. The adhesive layer bonds the first and second dielectric layers together. A distance in the direction of lamination between the signal line and the main ground conductor is greater than a distance in the direction of lamination between the signal line and the auxiliary ground conductor. | 03-12-2015 |
20150076922 | COMMUNICATION TERMINAL - A communication terminal includes a close-proximity communication coil, a power transmission coil, and a metal plate. The close-proximity communication coil is configured to be used in a close-proximity communication system. The power transmission coil is configured to be used in a contactless power transmission system. At least a portion of the metal plate is disposed between the close-proximity communication coil and the power transmission coil. The close-proximity communication coil and the power transmission coil are disposed in non-overlapping locations when viewed from a direction perpendicular or substantially perpendicular to a main surface of the metal plate. At least one of the close-proximity communication coil and the power transmission coil electromagnetically couples with the metal plate. | 03-19-2015 |
20150082629 | CONNECTING-AND-FIXING METHOD FOR CABLE - A high-frequency transmission line includes an insulator as a base material, and also includes linear conductors configured to transmit signals. Through holes are provided at positions corresponding to the positions of the linear conductors. The high-frequency transmission line is arranged on a connector in a state in which the positions of the bottom ends of the through holes are respectively aligned with the positions of signal terminals provided on the connector. A conductive bonding material provided at the top ends of the through holes is fluidized when heat is applied thereto, and flows to the bottom ends of the through holes due to surface tension or capillarity. As a result, the linear conductors are electrically connected to the signal terminals respectively. | 03-26-2015 |
20150084822 | CIRCUIT BOARD AND CIRCUIT MODULE - A circuit board and a circuit module more accurately provide impedance matching between an antenna coil and an electronic component electrically connected to the antenna coil, and include a board body including board portions and a plurality of laminated insulating material layers made of a flexible material. An antenna coil includes coil conductors provided in the board portion. Wiring conductors are provided in the board portion and electrically connected to the antenna coil. The board portion has a structure that is less likely to deform than the board portion. An integrated circuit electrically connected to the wiring conductors is mounted on the board portion. | 03-26-2015 |