Patent application number | Description | Published |
20120118363 | ORGANIC SEMICONDUCTORS AS WINDOW LAYERS FOR INORGANIC SOLAR CELLS - Disclosed is a device comprising: an anode; a cathode; an inorganic substrate; and at least one organic window layer positioned between: the anode and the inorganic substrate; or the cathode and the inorganic substrate. Also disclosed is a method of enhancing the performance of a photosensitive device having an anode, a cathode, and an inorganic substrate, comprising: positioning at least one organic window layer between the anode and the cathode. In one embodiment the organic window layer may absorb light and generate excitons that migrate to the inorganic where they convert to photocurrent, thereby increasing the efficiency of the device. Also disclosed is a method of enhancing Schottky barrier height of a photosensitive device, the method being substantially similar to the previously defined method. | 05-17-2012 |
20130082303 | HIGH THROUGHPUT EPITAXIAL LIFTOFF FOR RELEASING MULTIPLE SEMICONDUCTOR DEVICE LAYERS FROM A SINGLE BASE SUBSTRATE - A multilayered stack including alternating layers of sacrificial material layers and semiconductor material layers is formed on a base substrate. The thickness of each sacrificial material layer of the stack increases upwards from the sacrificial material layer that is formed nearest to the base substrate. Because of this difference in thicknesses, each sacrificial material layer etches at different rates, with thicker sacrificial material layers etching faster than thinner sacrificial material layers. An etch is performed that first removes the thickest sacrificial material layer of the multilayered stack. The uppermost semiconductor device layer within the multilayered stack is accordingly first released. As the etch continues, the other sacrificial material layers are removed sequentially, in the order of decreasing thickness, and the other semiconductor device layers are removed sequentially. | 04-04-2013 |
20130082356 | HIGH THROUGHPUT EPITAXIAL LIFTOFF FOR RELEASING MULTIPLE SEMICONDUCTOR DEVICE LAYERS FROM A SINGLE BASE SUBSTRATE - In one embodiment, a semiconductor structure is provided which includes a base substrate, and a multilayered stack located on the base substrate. The multilayered stack includes, from bottom to top, a first sacrificial material layer having a first thickness, a first semiconductor device layer, a second sacrificial material layer having a second thickness, and a second semiconductor device layer, wherein the first thickness is less than the second thickness. | 04-04-2013 |
20130126493 | SPALLING WITH LASER-DEFINED SPALL EDGE REGIONS - Laser ablation can be used to form a trench within at least a blanket layer of a stressor layer that is atop a base substrate. A non-ablated portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can also be used to form a trench within a blanket material stack including at least a plating seed layer. A stressor layer is formed on the non-ablated portions of the material stack and one portion of the stressor layer has an edge that defines the edge of the material layer region to be spalled. Laser ablation can be further used to form a trench that extends through a blanket stressor layer and into the base substrate itself. The trench has an edge that defines the edge of the material layer region to be spalled. | 05-23-2013 |
20130292801 | HIGH THROUGHPUT EPITAXIAL LIFTOFF FOR RELEASING MULTIPLE SEMICONDUCTOR DEVICE LAYERS FROM A SINGLE BASE SUBSTRATE - A semiconductor structure is provided that includes a base substrate, and a multilayered stack located on the base substrate. The multilayered stack includes, from bottom to top, a first sacrificial material layer having a first thickness, a first semiconductor device layer, a second sacrificial material layer having a second thickness, and a second semiconductor device layer, wherein the first thickness is less than the second thickness. | 11-07-2013 |
20130295750 | HIGH THROUGHPUT EPITAXIAL LIFTOFF FOR RELEASING MULTIPLE SEMICONDUCTOR DEVICE LAYERS FROM A SINGLE BASE SUBSTRATE - A method of removing a plurality of semiconductor device layers from an underlying base substrate. A multilayered stack including alternating layers of sacrificial material layers and semiconductor material layers is formed on a base substrate. Each successive sacrificial material layer that is formed is thicker than the previously formed sacrificial material layer. An etch is then performed that first removes the thickest sacrificial material layer of the multilayered stack. The uppermost semiconductor device layer within the multilayered stack is accordingly first released. As the etch continues, the other sacrificial material layers are removed sequentially, in the order of decreasing thickness, and the other semiconductor device layers are removed sequentially. | 11-07-2013 |
20130312819 | REMOVAL OF STRESSOR LAYER FROM A SPALLED LAYER AND METHOD OF MAKING A BIFACIAL SOLAR CELL USING THE SAME - A stressor layer used in a controlled spalling method is removed through the use of a cleave layer that can be fractured or dissolved. The cleave layer is formed between a host semiconductor substrate and the metal stressor layer. A controlled spalling process separates a relatively thin residual host substrate layer from the host substrate. Following attachment of a handle substrate to the residual substrate layer or other layers subsequently formed thereon, the cleave layer is dissolved or otherwise compromised to facilitate removal of the stressor layer. Such removal allows the fabrication of a bifacial solar cell. | 11-28-2013 |
20130316488 | REMOVAL OF STRESSOR LAYER FROM A SPALLED LAYER AND METHOD OF MAKING A BIFACIAL SOLAR CELL USING THE SAME - A stressor layer used in a controlled spalling method is removed through the use of a cleave layer that can be fractured or dissolved. The cleave layer is formed between a host semiconductor substrate and the metal stressor layer. A controlled spalling process separates a relatively thin residual host substrate layer from the host substrate. Following attachment of a handle substrate to the residual substrate layer or other layers subsequently formed thereon, the cleave layer is dissolved or otherwise compromised to facilitate removal of the stressor layer. Such removal allows the fabrication of a bifacial solar cell. | 11-28-2013 |
20130316538 | SURFACE MORPHOLOGY GENERATION AND TRANSFER BY SPALLING - The generation of surface patterns or the replication of surface patterns is achieved in the present disclosure without the need to employ an etching process. Instead, a unique fracture mode referred to as spalling is used in the present disclosure to generate or replicate surface patterns. In the case of surface pattern generation, a surface pattern is provided in a stressor layer and then spalling is performed. In the case of surface pattern replication, a surface pattern is formed within or on a surface of a base substrate, and then a stressor layer is applied. After applying the stressor layer, spalling is performed. Generation or replication of surface patterns utilizing spalling provides a low cost means for generation or replication of surface patterns. | 11-28-2013 |
20130316542 | SPALLING UTILIZING STRESSOR LAYER PORTIONS - A method for spalling local areas of a base substrate utilizing at least one stressor layer portion which is located on a portion, but not all, of an uppermost surface of a base substrate. The method includes providing a base substrate having a uniform thickness and a planar uppermost surface spanning across an entirety of the base substrate. At least one stressor layer portion having a shape is formed on at least a portion, but not all, of the uppermost surface of the base substrate. Spalling is performed which removes a material layer portion from the base substrate and provides a remaining base substrate portion. The material layer portion has the shape of the at least one stressor layer portion, while the remaining base substrate portion has at least one opening located therein which correlates to the shape of the at least one stressor layer. | 11-28-2013 |
20140007932 | FLEXIBLE III-V SOLAR CELL STRUCTURE - Solar cell structures include stacked layers in reverse order on a germanium substrate wherein a n++ (In)GaAs buffer layer plays dual roles as buffer and contact layers in the inverted structures. The absorbing layers employed in such exemplary structures are III-V layers such as (In)GaAs. Controlled spalling may be employed as part of the fabrication process for the solar cell structures, which may be single or multi-junction. The requirement for etching a buffer layer is eliminated, thereby facilitating the manufacturing process of devices using the disclosed structures. | 01-09-2014 |
20140034699 | METHOD FOR IMPROVING QUALITY OF SPALLED MATERIAL LAYERS - Methods for removing a material layer from a base substrate utilizing spalling in which mode III stress, i.e., the stress that is perpendicular to the fracture front created in the base substrate, during spalling is reduced. The substantial reduction of the mode III stress during spalling results in a spalling process in which the spalled material has less surface roughness at one of its' edges as compared to prior art spalling processes in which the mode III stress is present and competes with spalling. | 02-06-2014 |
20140084251 | ZINC OXIDE-CONTAINING TRANSPARENT CONDUCTIVE ELECTRODE - A transparent conductive electrode stack containing a work function adjusted zinc oxide is provided. Specifically, the transparent conductive electrode stack includes a layer of zinc oxide and a layer of a work function modifying material. The presence of the work function modifying material in the transparent conductive electrode stack shifts the work function of the layer of zinc oxide to a higher value for better hole injection into the OLED device as compared to a transparent conductive electrode that includes only a layer of zinc oxide and no work function modifying material. | 03-27-2014 |
20140084252 | DOPED GRAPHENE TRANSPARENT CONDUCTIVE ELECTRODE - Graphene is used as a replacement for indium tin oxide as a transparent conductive electrode which can be used in an organic light emitting diode (OLED) device. Using graphene reduces the cost of manufacturing OLED devices and also makes the OLED device extremely flexible. The graphene is chemically doped so that the work function of the graphene is shifted to a higher value for better hole injection into the OLED device as compared to an OLED device containing an undoped layer of graphene. An interfacial layer comprising a conductive polymer and/or metal oxide can also be used to further reduce the remaining injection barrier. | 03-27-2014 |
20140084253 | TRANSPARENT CONDUCTIVE ELECTRODE STACK CONTAINING CARBON-CONTAINING MATERIAL - A transparent conductive electrode stack containing a work function adjusted carbon-containing material is provided. Specifically, the transparent conductive electrode stack includes a layer of a carbon-containing material and a layer of a work function modifying material. The presence of the work function modifying material in the transparent conductive electrode stack shifts the work function of the layer of carbon-containing material to a higher value for better hole injection into the OLED device as compared to a transparent conductive electrode that includes only a layer of carbon-containing material and no work function modifying material. | 03-27-2014 |
20140084254 | OLED DISPLAY WITH SPALLED SEMICONDUCTOR DRIVING CIRCUITRY AND OTHER INTEGRATED FUNCTIONS - Spalling is employed to generate a single crystalline semiconductor layer. Complementary metal oxide semiconductor (CMOS) logic and memory devices are formed on a single crystalline semiconductor substrate prior to spalling. Organic light emitting diode (OLED) driving circuitry, solar cells, sensors, batteries and the like can be formed prior to, or after, spalling. The spalled single crystalline semiconductor layer can be transferred to a substrate. OLED displays can be formed into the spalled single crystalline semiconductor layer to achieve a structure including an OLED display with semiconductor driving circuitry and other functions integrated on the single crystalline semiconductor layer. | 03-27-2014 |
20140087500 | TRANSPARENT CONDUCTIVE ELECTRODE STACK CONTAINING CARBON-CONTAINING MATERIAL - A transparent conductive electrode stack containing a work function adjusted carbon-containing material is provided. Specifically, the transparent conductive electrode stack includes a layer of a carbon-containing material and a layer of a work function modifying material. The presence of the work function modifying material in the transparent conductive electrode stack shifts the work function of the layer of carbon-containing material to a higher value for better hole injection into the OLED device as compared to a transparent conductive electrode that includes only a layer of carbon-containing material and no work function modifying material. | 03-27-2014 |
20140087501 | DOPED GRAPHENE TRANSPARENT CONDUCTIVE ELECTRODE - Graphene is used as a replacement for indium tin oxide as a transparent conductive electrode which can be used in an organic light emitting diode (OLED) device. Using graphene reduces the cost of manufacturing OLED devices and also makes the OLED device extremely flexible. The graphene is chemically doped so that the work function of the graphene is shifted to a higher value for better hole injection into the OLED device as compared to an OLED device containing an undoped layer of graphene. An interfacial layer comprising a conductive polymer and/or metal oxide can also be used to further reduce the remaining injection barrier. | 03-27-2014 |
20140087504 | OLED DISPLAY WITH SPALLED SEMICONDUCTOR DRIVING CIRCUITRY AND OTHER INTEGRATED FUNCTIONS - Spalling is employed to generate a single crystalline semiconductor layer. Complementary metal oxide semiconductor (CMOS) logic and memory devices are formed on a single crystalline semiconductor substrate prior to spalling. Organic light emitting diode (OLED) driving circuitry, solar cells, sensors, batteries and the like can be formed prior to, or after, spalling. The spalled single crystalline semiconductor layer can be transferred to a substrate. OLED displays can be formed into the spalled single crystalline semiconductor layer to achieve a structure including an OLED display with semiconductor driving circuitry and other functions integrated on the single crystalline semiconductor layer. | 03-27-2014 |
20140087506 | ZINC OXIDE-CONTAINING TRANSPARENT CONDUCTIVE ELECTRODE - A transparent conductive electrode stack containing a work function adjusted zinc oxide is provided. Specifically, the transparent conductive electrode stack includes a layer of zinc oxide and a layer of a work function modifying material. The presence of the work function modifying material in the transparent conductive electrode stack shifts the work function of the layer of zinc oxide to a higher value for better hole injection into the OLED device as compared to a transparent conductive electrode that includes only a layer of zinc oxide and no work function modifying material. | 03-27-2014 |
20140179045 | TRANSPARENT CONDUCTIVE ELECTRODE STACK CONTAINING CARBON-CONTAINING MATERIAL - A transparent conductive electrode stack containing a work function adjusted carbon-containing material is provided. Specifically, the transparent conductive electrode stack includes a layer of a carbon-containing material and a layer of a work function modifying material. The presence of the work function modifying material in the transparent conductive electrode stack shifts the work function of the layer of carbon-containing material to a higher value for better hole injection into the OLED device as compared to a transparent conductive electrode that includes only a layer of carbon-containing material and no work function modifying material. | 06-26-2014 |
20140191237 | CRYSTALLINE THIN-FILM TRANSISTOR - A method for forming a thin film transistor includes joining a crystalline substrate to an insulating substrate. A doped layer is deposited on the crystalline substrate, and the doped layer is patterned to form source and drain regions. The crystalline substrate is patterned to form an active area such that a conductive channel is formed in the crystalline substrate between the source and drain regions. A gate stack is formed between the source and drain regions, and contacts are formed to the source and drain regions and the gate stack through a passivation layer. | 07-10-2014 |