Patent application number | Description | Published |
20140301408 | Conversion Device and Communication Network Having a Conversion Device - A conversion device is designed for converting message units of a first communications protocol, which are received by the conversion device on the input side, to container messages of a second communications protocol. A predefined maximal dwell duration in the conversion device is assigned to each message unit. The conversion device is designed for assigning message units with an identical recipient address received on the input side to a container message for the respective recipient address, and to forward the respective container message when the maximal dwell duration of one of the message units assigned to it has expired or a predefined maximal data volume is assigned to the respective container message, induced by the message units assigned to it. | 10-09-2014 |
20140325288 | Method and Device for Monitoring an Adaptive Network - An adaptive network has respective network nodes and network connections between the network nodes, the network nodes each having a transceiver which is coupled with a respective network connection. The respective transceiver is designed for providing a mean error value (MSE_i) which is representative of deviations of a received signal from predefined reference signal values. In a reference operating state of the adaptive network, a respective reference error value (MSE_REF) is determined as a function of the mean error value (MSE_i) provided by the respective transceiver. In at least one predefined operating state of the adaptive network, a respective actual error value (MSE_AV) is determined as a function of the mean error value (MSE_i) provided by the respective transceiver. As a function of the respective reference error value (MSE_REF) and the assigned actual error value (MSE_AV), it is determined whether a fault is present in the respective network connection which is coupled with the respective transceiver. | 10-30-2014 |
20150071115 | Data Logging or Stimulation in Automotive Ethernet Networks Using the Vehicle Infrastructure - The invention relates to a method and a device for recording data or for transmitting stimulation data, which are transmitted in Ethernet-based networks of vehicles. A method for recording data is described, wherein the data are transmitted from a transmitting control unit to a receiving control unit of a vehicle via a communication system of the vehicle. The communication system comprises an Ethernet network, wherein the data are conducted from a transmission component to a reception component of the Ethernet network via a transmission path, and wherein the data are to be recorded at a logging component of the Ethernet network, which does not lie on the transmission path. The method comprises the configuration of an intermediate component of the Ethernet network, which lies on the transmission path, to transmit a copy of the data as logging data to the logging component; and the recording of the logging data at the logging component. | 03-12-2015 |
20150156439 | Method, Apparatus, Computer Program and Computer Program Product for Transmitting Image Data - In a method for transmitting image data from a plurality of cameras in a vehicle, a set of functions is provided, which set of functions comprises a plurality of functions each having a requirement for a respective image setting of at least one of the cameras. If a function is activated, a respective image setting is set for at least one of the cameras on the basis of at least one of the function and a respective predefined desired data rate during image data transmission in order to provide the image data from the respective camera for the respective function. | 06-04-2015 |
20150163496 | METHOD AND APPARATUS FOR PERFORMING COMPRESSION OF IMAGE DATA - A method of performing compression of image data for at least one image is described. The method comprises receiving image data of at least a part of the at least one image, encoding the received image data into at least one compressed data block, applying at least one bandwidth limit to the at least one compressed data block, and outputting the at least one bandwidth limited compressed data block to a buffer. The method further comprises dynamically updating the at least one bandwidth limit applied to the at least one compressed data block base at least partly on a fill level of the buffer. | 06-11-2015 |
Patent application number | Description | Published |
20130014915 | ACCUMULATOR FOR A COOLING FLUID AND HEAT EXCHANGERAANM HIRSCH; StefanAACI StuttgartAACO DEAAGP HIRSCH; Stefan Stuttgart DEAANM NEFF; HeikoAACI AuenwaldAACO DEAAGP NEFF; Heiko Auenwald DEAANM WIEBELT; AchimAACI DeidesheimAACO DEAAGP WIEBELT; Achim Deidesheim DE - An accumulator for a cooling fluid is provided that includes a floor. The floor has an interface for connecting a chamber of the accumulator to at least one cooling tube. The floor also has an opening that extends at least over a partial area of the chamber. The accumulator furthermore has a lid that is embodied in such a way as to seal the opening of the floor in a fluid-tight manner. The lid is embodied as wire or extrusion profile. | 01-17-2013 |
20130333869 | HEAT EXCHANGER - The invention relates to a heat exchanger, in particular for controlling the temperature of batteries or electronics, having at least one header with a bottom and a top, with openings which are provided in the bottom for receiving tube ends of tubes which are in fluidic communication with the headers, the headers being formed from a U-shaped element with two parallel limbs and a bottom region which connects the limbs, the openings being provided in the bottom region and a wall region which is introduced between the limbs being provided as top. | 12-19-2013 |
20140013774 | THERMOELECTRIC TEMPERATURE CONTROL UNIT - The application relates to thermoelectric temperature control units, for example for controlling the temperature of an energy storage device in a motor vehicle. An exemplary embodiment comprises a Peltier element, having a first and a second surface, wherein the second surface is substantially adjacent or opposite to the first. The first surface is connected in a thermally conductive manner to a first and/or second flow duct, through which a fluid can flow. The second surface is connected in a thermally conductive manner to a heat-producing element, wherein the first flow duct is in fluid communication at one of the ends thereof with a first header, and the second flow duct is in fluid communication at one of the ends thereof with a second header, and the first flow duct and the second flow duct are in fluid communication at the respective second ends thereof with a common reversing header. | 01-16-2014 |
20140090803 | CONNECTING SYSTEM FOR A HEAT EXCHANGER - Connecting system for a heat exchanger, the housing of which is formed by a housing top part and a housing bottom part, wherein the connecting system has a first and a second connecting element, by means of which the housing bottom part is connected to the housing top part by a positive and/or material connection. | 04-03-2014 |
20140090810 | HEAT EXCHANGER - Heat exchanger having a housing, having a fluid inlet and having a fluid outlet, wherein the heat exchanger is in fluid communication via the fluid inlet and the fluid outlet with a fluid circuit, having a flow-guiding element in the interior of the housing, wherein the housing is formed from a substantially planar housing upper part and a substantially trough-like housing lower part, wherein the housing lower part has a base region and an encircling side wall, wherein the housing lower part is formed by a supporting structure and an encasement and the supporting structure is at least partially surrounded by the encasement, wherein the supporting structure is formed from a metallic material, and the encasement is formed substantially from a plastic, wherein the housing upper part is formed from a plastic and the housing lower part is connected to the housing upper part substantially by means of plastic-on-plastic contact. | 04-03-2014 |
20140090811 | HEAT EXCHANGER - Heat exchanger ( | 04-03-2014 |
20140090812 | HEAT EXCHANGER - Heat exchanger having a first collecting box and having a second collecting box, having at least one tube arranged between the two collecting boxes, wherein a fluid inlet and a fluid outlet are provided which are arranged individually on in each case one of the collecting boxes or on a single one of the collecting boxes, wherein the tube is received at the ends in an opening in in each case one of the collecting boxes and is in fluid communication with the collecting boxes, wherein the opening is surrounded by an opening edge whose contour corresponds to the outer contour of the tube, and in that the opening is designed such that the opening cross section narrows toward the interior of the collecting box and the tube can be inserted, under preload at the circumference, into the opening. | 04-03-2014 |
20140090813 | HEAT EXCHANGER - Heat exchanger having a housing, having a first fluid port and having a second fluid port, wherein the housing is in fluid communication with a fluid source via the fluid ports, wherein the housing can be traversed by a flow of a fluid, wherein the housing is of multi-part design and has a housing upper part and a housing lower part, wherein the housing upper part and/or the housing lower part has a base region and an at least partially encircling turned-up edge region, wherein housing the two parts are formed from a plastic or a fiber composite material. | 04-03-2014 |
20140090823 | HEAT EXCHANGER - The invention relates to a heat exchanger with a first and a second collecting tank, with at least one tube arranged between the two collecting tanks, each having a fluid inlet and a fluid outlet. At least one tube end is in fluid communication with a collecting tank and is connected to the collecting tank via a form-fitting and/or integrally bonded connection, wherein the opening is surrounded by an opening edge. | 04-03-2014 |
20140305622 | DEVICE FOR CONTROLLING THE TEMPERATURE OF AN ENERGY ACCUMULATOR, MORE PARTICULARLY FOR A VEHICLE, AND METHOD FOR PRODUCTION THEREOF - The present invention relates to a device for controlling the temperature of an energy accumulator, more particularly for a vehicle. The device has a first outer wall element and a second outer wall element. A main surface of the first outer wall element and a main surface of the second outer wall element are interconnected by means of a rib made of a hardened adhesive. The rib forms at least one fluid conduction channel for conducting a temperature control fluid between the first outer wall element and the second outer wall element. | 10-16-2014 |
20150034287 | HEAT EXCHANGER FOR COOLING A VEHICLE BATTERY, IN PARTICULAR FOR HYBRID OR ELECTRIC VEHICLES - A heat exchanger for cooling a vehicle battery, in particular for hybrid or electric vehicles, having at least one fluid collector made of plastic, which is connected to at least one cooling element. In a heat exchanger in which the energy efficiency of the motor vehicle is increased, the cooling element is designed as a plastic tube, in which a fluid is conducted from the first fluid collector to a second fluid collector. | 02-05-2015 |
20150204620 | HEAT EXCHANGER - A heat exchanger, particularly for a motor vehicle, having a tube/fin bundle with tubes, through which a coolant can flow, and having at least one manifold into which the coolant, coming out of the tubes, can flow, whereby the at least one manifold has a manifold top part and a manifold bottom part, whereby outwardly extending protrusions, which form a passage geometry for receiving the tubes of the tube/fin bundle, are formed on the manifold top part and the manifold bottom part. | 07-23-2015 |
20160056511 | HEAT EXCHANGER COMPONENT - A heat exchanger component of a temperature control system of an electrical energy store may include a carrier material and at least two layers. The at least two layers may include a first layer composed of an electrically insulating material and a second layer that may facilitate temperature control via at least one of cooling and heating the electrical energy store. | 02-25-2016 |
20160056512 | HEAT EXCHANGER COMPONENT - A heat exchanger component of a temperature control system of an electrical energy store may include a carrier material and at least two layers. The at least two layers may include a first layer composed of an electrically insulating material and a second layer that may facilitate temperature control via at least one of cooling and heating the electrical energy store. | 02-25-2016 |
Patent application number | Description | Published |
20080253228 | Drill string telemetry methods and apparatus - A method is provided which transmits information using a plurality of data transmission nodes situated along a drill string. In this method, a first node obtains a transmission status of a second node. When the transmission status of the second node indicates that the second node meets a selected performance threshold, information is sent from the first node to the second node. When the transmission status of the second node indicates that the second node does not meet its performance threshold, then the first node obtains a transmission status of a third node. When the transmission status of the third node indicates that the third node meets a selected performance threshold, information is transmitted from the first node to the third node for relaying along the drill string. | 10-16-2008 |
20100200296 | SYSTEM AND METHOD FOR ACCURATE WELLBORE PLACEMENT - A system and method of closed loop control whereby groupings of surface sonic transmitters disposed along the planned path of a well send sonic wave energy to a downhole sonic receiver (or alternatively a downhole sonic transmitter signalling to grouping of surface sonic receivers) in a manner that facilitates the downhole positioning of the well. Subsequent offset well positioning, relative to the first well, may be achieved in a similar manner. | 08-12-2010 |
20110006910 | TELEMETRY TRANSMITTER OPTIMIZATION USING TIME DOMAIN REFLECTOMETRY - A method for enhancing downhole telemetry performance comprising enhancing a signal in order to offset signal-to-noise ratio reduction with increasing measured depth, wherein the signal is modified at specified measured depths which are inferred from acoustic wave velocity determination. | 01-13-2011 |
20110069583 | APPARATUS AND METHOD FOR ACOUSTIC TELEMETRY MEASUREMENT OF WELL BORE FORMATION DEBRIS ACCUMULATION - An invention is claimed wherein the signal loss along steel drill pipe walls can be estimated in the absence of a loss mechanism due to the formation debris at various positions in the well bore; the signal loss in excess of the calculated attenuation is generally and directly attributable to the build-up of said formation debris and an estimation of the amount can be determined. Furthermore, by use of distributed acoustic nodes positioned in the well between the transmitter in the BHA and the surface receiver—configured as repeaters—the formation debris build-up can be determined in each section so defined. This new information enables the driller to implement hole cleaning means in a timely manner and as appropriate, thus avoiding the problems of getting stuck in the hole, and possible well abandonment. An extension of the method enables the hole cleaning process to be automated, thereby improving efficiency. | 03-24-2011 |
20110141852 | AIR HAMMER OPTIMIZATION USING ACOUSTIC TELEMETRY - A system and method of optimizing air hammer performance in a well drilling rig whereby an electronic acoustic receiver (EAR) is used to monitor the effects of changing any of the operating parameters under his or her control. The signals are visually presented to the drill operator based on an EAR's output, along with current settings, allowing the drill operator to dial in the parameters of his or her choice until the optimal frequency of the air hammer is regained. The visual output displays the amplitude response of acoustic waves being detected and decoded at the surface by the EAR. The drill operator can observe and use this information to determine the changes necessary in the operating parameters to return the hammer to optimal frequency, and thus optimal performance. | 06-16-2011 |
20110163889 | TELEMETRY WAVE DETECTION APPARATUS AND METHOD - Non-contacting means of measuring the material velocities of harmonic acoustic telemetry waves travelling along the wall of drillpipe, production tubing or coiled tubing are disclosed. Also disclosed are contacting means, enabling measurement of accelerations or material velocities associated with acoustic telemetry waves travelling along the wall of the tubing, utilizing as a detector either a wireless accelerometer system or an optical means, or both; these may also be applied to mud pulse telemetry, wherein the telemetry waves are carried via the drilling fluid, causing strain in the pipe wall that in turn causes wall deformation that can be directly or indirectly assessed by optical means. | 07-07-2011 |
Patent application number | Description | Published |
20110138879 | Method and control unit for detecting a gas concentration of gas from a gas mixture | 06-16-2011 |
20120273846 | Sensor for Detecting a Component of a Gas Mixture - A sensor for detecting a first component in a gas mixture is disclosed having a gas-sensitive electrode and a catalyst which is arranged on and/or spaced apart from the electrode in a porous carrier ceramic. The catalyst has the effect that a second component in the gas mixture is chemically altered such that the component contributes to no substantial change in the potential of the electrode. | 11-01-2012 |
20130045541 | OPTICAL GAS SENSOR - A gas sensor and method for ascertaining the concentration of one or more gas species, in the exhaust gas of an internal combustion engine. The gas sensor includes a measuring cell having a gas inlet, a gas outlet, a catalysis area, and an analysis area. The sensor also includes a catalytic converter for catalyzing a reaction of a first gas species to form a second gas species in the catalysis area, and a gas analyzer for spectroscopically measuring the concentration of the second gas species in the analysis area. Through the catalytic converter, a first gas species may be converted into a second gas species whose absorption and/or scattering wavelength(s) are within the emission wavelength range of semiconductor radiation sources, so that the gas analyzer may have a semiconductor radiation source. | 02-21-2013 |
20130298641 | SAMPLE COLLECTION UNIT, SYSTEM AND METHOD FOR MICROBIOLOGICAL AIR ANALYSIS - A sample collection unit for microbiological air analysis includes a housing and a sample treatment path. The housing has a sample inlet opening, an optical window, and an air outlet opening. The sample treatment path has a conjugation pad, and a test strip with a test area and an absorber section. The sample collection unit also has a device configured to receive a container for a solvent, and a device configured to release the solvent. The sample collection unit is preferably configured as a disposable component in the form of a cartridge. Integration of the container for the solvent in the sample collection unit permits simplification and automation of the corresponding sampling method. | 11-14-2013 |
20140057360 | ARRANGEMENT AND METHOD FOR DETECTING HYDROGEN PEROXIDE - An arrangement for detecting hydrogen peroxide includes a sample space configured to receive a hydrogen-peroxide-containing gas. The sample space is fluidically connected to a hydrogen-peroxide-selective colorimetric detection reagent. The arrangement also includes at least one radiation source configured to irradiate the detection reagent and at least one detector configured to detect at least one optical property of the colorimetric detection reagent. This arrangement enables detection of hydrogen peroxide in the gaseous phase without the need to transfer hydrogen peroxide to the liquid phase. As a result, a simplified measurement behavior and additionally a highly sensitive measurement are attained. | 02-27-2014 |
Patent application number | Description | Published |
20110010495 | AUTONOMIC RECLAMATION PROCESSING ON SEQUENTIAL STORAGE MEDIA - Various embodiments for autonomic reclamation of data stored on at least one sequential storage media are provided. In one exemplary embodiment, active data stored on the at least one sequential storage media is identified. The active data is read out from a reclamation memory. The active data is stored in a sequential order by starting at a beginning block address of the at least one sequential storage media. | 01-13-2011 |
20120179868 | AUTONOMIC RECLAMATION PROCESSING FOR TAPES - Various embodiments for autonomic reclamation processing for tapes are provided. Instructions are received to perform reclamation processing on the formatted tape. Formatted tape is loaded into a tape drive for buffering active data during reclamation processing and consolidating all of the active data in capacity optimized manner on the same formatted tape. The formatted tape comprises metadata denoting active and inactive data blocks for files. The meta data of the formatted tape is read into a reclamation memory. The table is sorted and a starting block address is sorted. All active files ordered in the table starting at the starting block address are read into the reclamation memory. The files are written from the reclamation memory to the formatted tape from the starting block address and updating the table with new block addresses of the files. The meta data is updated with the updated table. | 07-12-2012 |
20120265954 | SYSTEM AND METHOD FOR OPTIMIZED RECLAMATION PROCESSING IN A VIRTUAL TAPE LIBRARY SYSTEM - A storage management application determines that a source virtual tape requires reclamation, identifies all block addresses for active data of a source virtual tape and sorts the block addresses in an ascending order, identifies a target virtual tape which has sufficient free capacity to store the active data of said source virtual tape and the last written block address on said target virtual tape, and sends a command to the VTL-system instructing it to perform reclamation including information about said source and said target virtual tape, the sorted list of block addresses denoting active data on the source virtual tape and the starting block address on the target virtual tape. The reclamation logic references the active data host blocks of said source volume to said target virtual tape starting at said starting block address by just updating the host block to disk block mapping table. | 10-18-2012 |
20130185500 | AUTONOMIC RECLAMATION PROCESSING FOR TAPES - Various embodiments for autonomic reclamation processing for tapes are provided. Instructions are received to perform reclamation processing on the formatted tape. Formatted tape is loaded into a tape drive for buffering active data during reclamation processing and consolidating all of the active data in capacity optimized manner on the same formatted tape. The formatted tape comprises metadata denoting active and inactive data blocks for files. The meta data of the formatted tape is read into a reclamation memory. The table is sorted and a starting block address is sorted. All active files ordered in the table starting at the starting block address are read into the reclamation memory. The files are written from the reclamation memory to the formatted tape from the starting block address and updating the table with new block addresses of the files. The meta data is updated with the updated table. | 07-18-2013 |
20150309748 | AUTONOMIC RECLAMATION PROCESSING ON SEQUENTIAL STORAGE MEDIA - Various embodiments for autonomic reclamation of data stored on at least one sequential storage media are provided. In one exemplary embodiment, active data is identified, read out, and stored in a sequential order by starting at a beginning block address of the at least one sequential storage media. At least one of a start address, an end address, and a data length of all original blocks of the active data in a backup application is defined. A new start address for each original block of active data to be written to the backup application is generated. A mapping is yielded and sent from the backup application to a sequential storage media device having the at least one sequential storage media, and the active data is read from each original block address in sequential order. | 10-29-2015 |
Patent application number | Description | Published |
20100274389 | Device Comprising A Robot, Medical Work Station, And Method For Registering An Object - The invention relates to a medical device, a medical work station, and a method for registering an object (P). The medical device comprises a navigation system ( | 10-28-2010 |
20100292707 | Sterile Barrier For A Surgical Robot With Torque Sensors - The invention relates to a sterile barrier (S) for a surgical robot ( | 11-18-2010 |
20110190790 | Method For Operating A Medical Robot, Medical Robot, And Medical Work Place - The invention relates to a method for operating a telemanipulated medical robot (R) guided by hand or by means of an input device, to a telemanipulated medical robot (R) guided by hand or by means of an input device, and to a medical work place. The medical robot (R) comprises a robot arm (M) with a plurality of moveable axes ( | 08-04-2011 |
20120022552 | Method For Operating A Medical Robot, A Medical Robot, And A Medical Workstation - A method for operating a medical robot, a medical robot, and a medical work station. | 01-26-2012 |
20120116416 | Medical Workstation - The invention relates to a medical work station ( | 05-10-2012 |
20130282179 | Telepresence System - The invention relates to a telepresence system ( | 10-24-2013 |
20150133960 | Robotic Surgery System - One aspect of the robotic surgery system according to the invention relates to a robot assembly comprising at least one robot and an instrument assembly comprising at least one instrument that is guided by said robot assembly. Said instrument assembly comprises at least one instrument housing having at least one drive unit housing part containing a cavity designed to hold the drive unit, said drive unit housing part having a seal for the sterile sealing of an insertion opening of the cavity in addition to a dynamic sterile barrier which delimits the cavity in a sterile manner and across which the drive train arrangement can be actuated;; and/or the drive unit is offset laterally in relation to a longitudinal axis of the instrument shaft towards a connection between the instrument housing and the robot assembly. | 05-14-2015 |
20150142012 | Robotic Surgery System - One aspect of the robotic surgery system according to the invention relates to a robot assembly comprising at least one robot and an instrument assembly comprising at least one instrument that is guided by said robot assembly. Said instrument assembly comprises at least one instrument housing having at least one drive unit housing part containing a cavity designed to hold the drive unit, said drive unit housing part having a seal for the sterile sealing of an insertion opening of the cavity in addition to a dynamic sterile barrier which delimits the cavity in a sterile manner and across which the drive train arrangement can be actuated; and/or the drive unit is offset laterally in relation to a longitudinal axis of the instrument shaft towards a connection between the instrument housing and the robot assembly. | 05-21-2015 |
20150148818 | Surgical robot system - One aspect of the robotic surgery system according to the invention relates to a robot assembly comprising at least one robot and an instrument assembly comprising at least one instrument that is guided by said robot assembly. Said instrument assembly comprises at least one instrument housing having at least one drive unit housing part containing a cavity designed to hold the drive unit, said drive unit housing part having a seal for the sterile sealing of an insertion opening of the cavity in addition to a dynamic sterile barrier which delimits the cavity in a sterile manner and across which the drive train arrangement can be actuated; and/or the drive unit is offset laterally in relation to a longitudinal axis of the instrument shaft towards a connection between the instrument housing and the robot assembly. | 05-28-2015 |