Patent application number | Description | Published |
20100070509 | System And Method For High-Dimensional Similarity Search - A computer-implemented method for searching a plurality of stored objects. Data objects are placed in a hash table, an ordered sequence of locations (probing sequence) in the hash table from a query object is generated and data objects in the hash table locations in the generated ordered sequence are examined to find objects whose relationships with the query object satisfy a certain predetermined function defined on pairs of objects. | 03-18-2010 |
20140056532 | LOSSLESS COMPRESSION OF FRAGMENTED IMAGE DATA - Lossless compression of fragmented image data is disclosed. In some embodiments, a stream of information is received, wherein the stream of information comprises a sequence of tuples and wherein each of the tuples comprises data elements corresponding to one of a plurality of input channels. A channel transformer is employed to rearrange the data elements into a plurality of output channels for an output stream wherein the output channels have higher compressibility than the input channels. The compressed output stream is stored. | 02-27-2014 |
20140056533 | LOSSLESS COMPRESSION OF FRAGMENTED IMAGE DATA - Lossless compression of fragmented image data is disclosed. In some embodiments, a stream of information comprising data elements having statistical characteristics is received. An encoded output is produced by an encoder comprising a data compressor that implements a variable length code that is adapted to the statistical characteristics of the data elements. The output and information from which the variable length code can be derived are stored. | 02-27-2014 |
20140059021 | FORMAT IDENTIFICATION FOR FRAGMENTED IMAGE DATA - Format identification for fragmented data is disclosed. In some embodiments, an input stream of information that includes a continuity property is received. A format identifier of at least a portion of the stream is determined, wherein the format identifier includes a data representation size, a group size, and an alignment that is consistent with the continuity property. The stream of information is compressed using a compression technique selected based on the format identifier to produce a compressed stream, and the compressed stream is stored. | 02-27-2014 |
20140059022 | FORMAT IDENTIFICATION FOR FRAGMENTED IMAGE DATA - Format identification for fragmented data is disclosed. In some embodiments, an input stream of information that is divided into fragments is received. Fragment boundaries are determined and a data format for each fragment is found based on continuity properties including by: dividing the stream of information into windows, determining whether each window has a known or unknown format; and comparing portions of windows having an unknown format with neighboring windows to determine fragment boundaries. The stream of information is compressed using a compression technique selected based on the data format, and the compressed stream is stored. | 02-27-2014 |
20140059091 | FORMAT IDENTIFICATION FOR FRAGMENTED IMAGE DATA - Format identification for fragmented data is disclosed. In some embodiments, an input stream of information that is divided into fragments is received. Fragments are determined and a data format for each fragment is found based on continuity properties including by: determining a physical to canonical layout transformation, determining a tuple size, and partitioning bit positions in tuples into disjoint groups wherein each group corresponds to a channel. The stream of information is compressed using a compression technique selected based on the data format, and the compressed stream is stored. | 02-27-2014 |
Patent application number | Description | Published |
20080265312 | Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout - This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region. | 10-30-2008 |
20080310065 | Methods of achieving linear capacitance in symmetrical and asymmetrical EMI filters with TVS - A transient voltage suppressing (TVS) circuit with uni-directional blocking and symmetric bi-directional blocking capabilities integrated with an electromagnetic interference (EMI) filter supported on a semiconductor substrate of a first conductivity type. The TVS circuit integrated with the EMI filter further includes a ground terminal disposed on the surface for the symmetric bi-directional blocking structure and at the bottom of the semiconductor substrate for the uni-directional blocking structure and an input and an output terminal disposed on a top surface with at least a Zener diode and a plurality of capacitors disposed in the semiconductor substrate to couple the ground terminal to the input and output terminals with a direct capacitive coupling without an intermediate floating body region. | 12-18-2008 |
20090256149 | Structure for Measuring Body Pinch Resistance of High Density Trench MOSFET Array - A structure is disclosed for measuring body pinch resistance Rp of trench MOSFET arrays on a wafer. The trench MOSFET array has a common drain layer of first conductivity type and a 2D-trench MOSFET array atop the common drain layer. The 2D-trench MOSFET array has an interdigitated array of source-body columns and gate trench columns. Each source-body column has a bottom body region of second conductivity type with up-extending finger structures. Each source-body column has top source regions of first conductivity type bridging the finger structures. The structure includes:
| 10-15-2009 |
20100105182 | Shallow source MOSFET - Fabricating a semiconductor device includes forming a hard mask on a substrate having a top substrate surface, forming a trench in the substrate through the hard mask, depositing gate material in the trench, where the amount of gate material deposited in the trench extends beyond the top substrate surface, and removing the hard mask to leave a gate having a gate top surface that extends substantially above the top substrate surface at least in center region of the trench opening, the gate having a vertical edge that includes an extended portion, the extended portion extending above the trench opening and being substantially aligned with the trench wall. It further includes implanting a body, implanting a plurality of source regions embedded in the body, forming a plurality of spacers that insulate the source regions from the gate, the plurality of spacers being situated immediately adjacent to the gate and immediately adjacent to respective ones of the plurality of source regions, wherein the plurality of spacers do not substantially extend into the trench and do not substantially extend over the trench, disposing a dielectric layer over the source, the spacers, the gate, and at least a portion of the body, forming a contact opening, and disposing metal to form a contact with the body at the contact opening. | 04-29-2010 |
20100163846 | Nano-tube mosfet technology and devices - This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches. | 07-01-2010 |
20110140194 | Enhancing Schottky breakdown voltage (BV) without affecting an integrated Mosfet-Schottky device layout - This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region. | 06-16-2011 |
20110147830 | METHOD OF FORMING A SELF-ALIGNED CHARGE BALANCED POWER DMOS - Self-aligned charge balanced semiconductor devices and methods for forming such devices are disclosed. One or more planar gates are formed over a semiconductor substrate of a first conductivity type. One or more deep trenches are etched in the semiconductor self-aligned to the planar gates. The trenches are filled with a semiconductor material of a second conductivity type such that the deep trenches are charge balanced with the adjacent regions of the semiconductor substrate This process can form self-aligned charge balanced devices with a cell pitch less than 12 microns. | 06-23-2011 |
20110183499 | Nano-tube MOSFET technology and devices - This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches. | 07-28-2011 |
20130009238 | ENHANCING SCHOTTKY BREAKDOWN VOLTAGE (BV) WITHOUT AFFECTING AN INTEGRATED MOSFET-SCHOTTKY DEVICE LAYOUT - This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region. | 01-10-2013 |
20130075855 | Manufacturing methods for accurately aligned and self-balanced superjunction devices - A method for manufacturing a semiconductor power device on a semiconductor substrate supporting a drift region composed of an epitaxial layer by growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers then carrying out a device manufacturing process on a top side of the epitaxial layer with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers. | 03-28-2013 |
20130221430 | NANO-TUBE MOSFET TECHNOLOGY AND DEVICES - This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches. | 08-29-2013 |
20130341689 | METHOD OF FORMING A SELF-ALIGNED CHARGE BALANCED POWER DMOS - Self-aligned charge balanced semiconductor devices and methods for forming such devices are disclosed. One or more planar gates are formed over a semiconductor substrate of a first conductivity type. One or more deep trenches are etched in the semiconductor self-aligned to the planar gates. The trenches are filled with a semiconductor material of a second conductivity type such that the deep trenches are charge balanced with the adjacent regions of the semiconductor substrate Source and body regions are formed by implanting dopants onto the filled trenches. This process can form self-aligned charge balanced devices with a cell pitch less than 12 microns. | 12-26-2013 |
20140374823 | ENHANCING SCHOTTKY BREAKDOWN VOLTAGE (BV) WITHOUT AFFECTING AN INTEGRATED MOSFET-SCHOTTKY DEVICE LAYOUT - This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region. | 12-25-2014 |
Patent application number | Description | Published |
20090217701 | Natural Gas Liquefaction Process for Ling - Embodiments of this invention relate to a process for liquefaction of natural gas and other methane-rich gas streams, and more particularly to a process for producing liquefied natural gas (LNG). In a first step of the process, a first fraction of the feed gas is withdrawn, compressed to a pressure greater than or equal to 1500 psia, cooled and expanded to a lower pressure to cool the withdrawn first fraction. The remaining fraction of the feed stream is cooled by indirect heat exchange with the expanded first fraction in a first heat exchange process. In a second step a separate stream comprising flash vapor is compressed, cooled and expanded to a lower pressure providing another cold stream. This cold stream is used to cool the remaining feed gas stream in a second indirect heat exchange process. The expanded stream exiting from the second heat exchange process is used for supplemental cooling in the first indirect heat exchange step. The remaining feed gas is subsequently expanded to a lower pressure, thereby partially liquefying this feed gas stream. The liquefied fraction of this stream is withdrawn from the process as LNG having a temperature corresponding to the bubble point pressure. | 09-03-2009 |
20100107684 | Natural Gas Liquefaction Process - The invention relates to a process for liquefying a gas stream rich in methane, said process comprising: (a) providing said gas stream; (b) withdrawing a portion of said gas stream for use as a refrigerant; (c) compressing said refrigerant; (d) cooling said compressed refrigerant with an ambient temperature cooling fluid; (e) subjecting the cooled, compressed refrigerant to supplemental cooling; (f) expanding the refrigerant of (e) to further cool said refrigerant, thereby producing an expanded, supplementally cooled refrigerant; (g) passing said expanded, supplementally cooled refrigerant to a heat exchange area; and, (h) passing said gas stream of (a) through said heat exchange area to cool at least part of said gas stream by indirect heat exchange with said expanded, supplementally cooled refrigerant, thereby forming a cooled gas stream. In further embodiments for improved efficiencies, additional supplemental cooling may be provided after one or more other compression steps. | 05-06-2010 |
20100186445 | Natural Gas Liquefaction Process - The described invention relates to processes and systems for treating a gas stream, particularly one rich in methane for forming liquefied natural gas (LNG), said process including: (a) providing a gas stream; (b) providing a refrigerant; (c) compressing said refrigerant to provide a compressed refrigerant; (d) cooling said compressed refrigerant by indirect heat exchange with a cooling fluid; (e) expanding the refrigerant of (d) to cool said refrigerant, thereby producing an expanded, cooled refrigerant; (f) passing said expanded, cooled refrigerant to a first heat exchange area; (g) compressing the gas stream of (a) to a pressure of from greater than or equal to 1,000 psia to less than or equal to 4,500 psia; (h) cooling said compressed gas stream by indirect heat exchange with an external cooling fluid; and heat exchanging the compressed gas stream with the expanded, cooled refrigerant stream. | 07-29-2010 |
20110000221 | Low Emission Power Generation and Hydrocarbon Recovery Systems and Methods - Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes integrated pressure maintenance and miscible flood systems with low emission power generation. An alternative system provides for low emission power generation, carbon sequestration, enhanced oil recovery (EOR), or carbon dioxide sales using a hot gas expander and external combustor. Another alternative system provides for low emission power generation using a gas power turbine to compress air in the inlet compressor and generate power using hot carbon dioxide laden gas in the expander. Other efficiencies may be gained by incorporating heat cross-exchange, a desalination plant, co-generation, and other features. | 01-06-2011 |
20110297346 | Methods and Systems of Regenerative Heat Exchange - The present disclosure teaches apparatuses, systems, and methods for improving energy efficiency using high heat capacity materials. Some embodiments include a phase change material (PCMs). Particularly, the systems may include a re-gasification system, a liquefaction system, or an integrated system utilizing a heat exchanger with a regenerator matrix, a shell and tube arrangement, or cross-flow channels (e.g. a plate-fin arrangement) to store cold energy from a liquefied gas in a re-gasification system at a first location for use in a liquefaction process at a second location. The regenerator matrix may include a plurality of PCMs stacked sequentially or may include a continuous phase material comprised of multiple PCMs. Various encapsulation approaches may be utilized. Reliquefaction may be accomplished with such a system. Natural gas in remote locations may be made commercially viable by converting it to liquefied natural gas (LNG), transporting, and delivering it utilizing the disclosed systems and methods. | 12-08-2011 |
20120247105 | Low Emission Power Generation and Hydrocarbon Recovery Systems and Methods - Integrated systems and methods for low emission power generation in a hydrocarbon recovery processes are provided. One system includes a control fuel stream, an oxygen stream, a combustion unit, a first power generate on system and a second power generation system. The combustion unit is configured to receive and combust the control fuel stream and the oxygen stream to produce a gaseous combustion stream having carbon dioxide and water. The first power generation system is configured to generate at least one unit of power and a carbon dioxide stream. The second power generation system is configured to receive thermal energy from the gaseous combustion stream and convert the thermal energy into at least one unit of power. | 10-04-2012 |
20130074541 | Systems and Methods For Using Cold Liquid To Remove Solidifiable Gas Components From Process Gas Streams - Systems and methods are described for re-moving solidifiable gas from a process gas stream by direct contact with a cold liquid. The process gas stream includes at least gas that is frozen by the cold liquid while one or more other gases of the process gas stream remain in a gaseous state. The process gas stream may include water, and will have a different composition than the cold liquid. The contacting of the cold liquid with the process gas stream may be at a pressure that is less than 200 psia, and optionally less than 100 psia, 50 psia, or even 30 psia, and the solidified gas may be removed from the contacting assembly as a slurry with cold liquid. | 03-28-2013 |
20130086916 | Low Emission Power Generation Systems and Methods - Methods and systems for C0 | 04-11-2013 |
20130091853 | Stoichiometric Combustion With Exhaust Gas Recirculation and Direct Contact Cooler - Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes a gas turbine system configured to stoichiometrically combust a compressed oxidant and a fuel in the presence of a compressed recycle exhaust gas and expand the discharge in an expander to generate a gaseous exhaust stream and drive a main compressor. A boost compressor can receive and increase the pressure of the gaseous exhaust stream and inject it into an evaporative cooling tower configured to use an exhaust nitrogen gas having a low relative humidity as an evaporative cooling media. The cooled gaseous exhaust stream is then compressed and recirculated through the system as a diluent to moderate the temperature of the stoichiometric combustion. | 04-18-2013 |
20130104562 | Low Emission Tripe-Cycle Power Generation Systems and Methods | 05-02-2013 |
20130104563 | Low Emission Triple-Cycle Power Generation Systems and Methods | 05-02-2013 |
20140374109 | Enhanced Carbon Dioxide Capture in a Combined Cycle Plant - Methods and systems for enhanced carbon dioxide capture in a combined cycle plant are described. A method includes compressing a recycle exhaust gas from a gas turbine system, thereby producing a compressed recycle exhaust gas stream. A purge stream is extracted from the compressed recycle exhaust gas stream. Carbon dioxide is removed from the extracted purge stream using a solid sorbent. | 12-25-2014 |
Patent application number | Description | Published |
20130097303 | METHOD AND APPARATUS FOR PROVIDING IDENTIFICATION BASED ON A MULTIMEDIA SIGNATURE - An approach is provided for providing identification based on a multimedia signature. An indication platform processes and/or facilitates a processing of one or more device events to determine one or more participants, one or more participant devices, or a combination thereof. The indication platform further causes, at least in part, an association of one or more multimedia signatures with the one or more device events, the one or more participants, the one or more participant devices, or a combination thereof. The indication platform also determines to identify the one or more device events, the one or more participants, the one or more participant devices, or a combination thereof based, at least in part, on the association. | 04-18-2013 |
20130268582 | Method And Apparatus for Distributing Content Among Multiple Devices While In An Offline Mode - An example approach is provided for distributing content among user devices while in an offline mode. In the approach, a distributing/requesting module causes determination of one or more requests from at least one requesting device for one or more content items associated with at least one distributing device, wherein the one or more requests are determined using local connectivity between the at least one requesting device and the at least one distributing device. Further, distributing/requesting module causes an exchange, a storage, or a combination thereof of transactional information associated with the one or more requests, a delivery of the one or more content items, or a combination thereof of in an offline mode. Furthermore, the distributing/requesting module causes a transmission of the transactional information to at least one server when in an online mode. | 10-10-2013 |