Patent application number | Description | Published |
20130163850 | MASK PATTERN AND CORRECTING METHOD THEREOF - A mask pattern and a correcting method thereof are provided. The correcting method includes the following steps. An original pattern having a first original contour and a second original contour is provided. The first original contour has a first original corner. The second original contour has a second original corner, which is near the first original corner. The first and second original corners are cut to form a cut pattern. An optical proximity correction (OPC) process is applied to the cut pattern to form the mask pattern. | 06-27-2013 |
20130280645 | Mask Set for Double Exposure Process and Method of Using the Mask Set - A mask set for double exposure process and method of using said mask set. The mask set is provided with a first mask pattern having a first base and a plurality of first teeth and protruding portions, and a second mask pattern having a second base and a plurality of second teeth, wherein the second base may at least partially overlap the first base such that each of the protruding portions at least partially overlaps one of the second teeth. | 10-24-2013 |
20140040837 | METHOD OF OPTICAL PROXIMITY CORRECTION ACCORDING TO COMPLEXITY OF MASK PATTERN - A method of optical proximity correction (OPC) includes the following steps. At first, a layout pattern is provided to a computer system. Subsequently, the layout pattern is classified into at least a first region and at least a second region. Then, several iterations of OPC calculations are performed to the layout pattern, and a total number of OPC calculations performed in the first region is substantially larger than a total number of OPC calculations performed in the second region. Afterwards, a corrected layout pattern is outputted through the computer system onto a mask. | 02-06-2014 |
20140256132 | METHOD FOR PATTERNING SEMICONDUCTOR STRUCTURE - A method for patterning a semiconductor structure is provided. The method comprises following steps. A first mask defining a first pattern in a first region and a second pattern in a second region adjacent to the first region is provided. The first pattern defined by the first mask is transferred to a first film structure in the first region, and the second pattern defined by the first mask is transferred to the first film structure in the second region. A second film structure is formed on the first film structure. A second mask defining a third pattern in the first region is provided. At least 50% of a part of the first region occupied by the first pattern defined by the first mask is identical with a part of the first region occupied by the third pattern defined by the second mask. | 09-11-2014 |
20140258946 | MASK SET FOR DOUBLE EXPOSURE PROCESS AND METHOD OF USING THE MASK SET - A mask set for double exposure process and method of using said mask set. The mask set is provided with a first mask pattern having a first base and a plurality of first teeth and protruding portions, and a second mask pattern having a second base and a plurality of second teeth, wherein the second base may at least partially overlap the first base such that each of the protruding portions at least partially overlaps one of the second teeth. | 09-11-2014 |
20140282295 | Method for Forming Photo-masks and OPC Method - The present invention provides a method for forming at least a photo mask. A first photo-mask pattern relating to a first structure is provides. A second photo-mask pattern relating to a second structure is provides. A third photo-mask pattern relating to a third structure is provides. The first structure, the second structure and the third structure are disposed in a semiconductor structure in sequence. An optical proximity process including a comparison step is provided, wherein the comparison step includes comparing the first photo-mask pattern and the third photo-mask pattern. Last, the first photo-mask pattern is import to form a first mask, the second photo-mask pattern is import to form a second mask, and the third photo-mask pattern is import to form a third mask. The present invention further provides an OPC method. | 09-18-2014 |
20150036116 | APERTURE FOR PHOTOLITHOGRAPHY - An aperture is configured to be disposed between an illumination source and a semiconductor substrate in a photolithography system. The aperture includes a light-transmission portion with a non-planar thickness profile to compensate the discrepancy of wave-fronts of the light beams of different orders. | 02-05-2015 |
20150052491 | METHOD FOR GENERATING LAYOUT PATTERN - A method for generating a layout pattern is provided. First, a layout pattern is provided to a computer system and is classified into two sub-patterns and a blank pattern. Each of the sub-patterns has pitches in simple integer ratios and the blank pattern is between the two sub-patterns. Then, a plurality of first stripe patterns and at least two second stripe patterns are generated. The edges of the first stripe patterns are aligned with the edges of the sub-patterns and the first stripe patterns have equal spacings and widths. The spacings or widths of the second stripe patterns are different from that of the first stripe patterns. | 02-19-2015 |
20150072272 | Method For Forming Photo-Mask And OPC Method - A method for forming a photo-mask is provided. A first photo-mask pattern relating to a first line, an original second photo-mask pattern relating to a first via plug, and a third photo-mask pattern relating to a second line are provided. A first optical proximity correction (OPC) process is performed. A second OPC process is performed, comprising enlarging a width of the second photo-mask pattern along the first direction to form a revised second photo-resist pattern. A contour simulation process is performed to make sure the revised second photo-mask pattern is larger or equal to the original second-mask pattern. The first photo-mask pattern, the revised second photo-mask pattern, and the third photo-mask pattern are output. The present invention further provides an OPC method. | 03-12-2015 |
20150125063 | METHOD OF OPTICAL PROXIMITY CORRECTION - A calculation method of optical proximity correction includes providing at least a feature pattern to a computer system. At least a first template and a second template are defined so that portions of the feature pattern are located in the first template and the rest of the feature pattern is located in the second template. The first template and the second template have a common boundary. Afterwards, a first calculation zone is defined to overlap an entire first template and portions of the feature pattern out of the first template. Edges of the feature pattern within the first calculation zone are then fragmented from the common boundary towards two ends of the feature pattern so as to generate at least two first beginning segments respectively at two sides of the common boundary. Finally, positions of the first beginning segments are adjusted so as to generate first adjusted segments. | 05-07-2015 |
20150332449 | METHOD AND APPARATUS FOR INTEGRATED CIRCUIT DESIGN - A method for IC design is provided. Firstly, an IC design layout having a main feature with an original margin is received. Then, a first modified margin of the main feature is generated; and a first photolithography simulation procedure of the main feature with the first modified margin is performed to generate a first contour having a plurality of curves. Next, an equation of each of the curves is obtained; each equation of the curves is manipulated to obtain a vertex of each of the curves. After that, a first group of target points are assigned to the original margin. Each of the first group of target points respectively corresponds to one of the vertices. Finally, an optical proximity correction (OPC) procedure is performed by using the first group of target points to generate a second modified margin. An apparatus for IC design is also provided. | 11-19-2015 |
20150347657 | METHOD FOR GENERATING LAYOUT PATTERN - A method of generating a layout pattern including a FinFET structure layout includes the following processes. First, a layout pattern, which includes a sub-pattern having pitches in simple integer ratios, is provided to a computer system. The sub-pattern is then classified into a first sub-pattern and a second sub-pattern. Afterwards, first stripe patterns and at least one second stripe pattern are generated. The longitudinal edges of the first stripe patterns are aligned with the longitudinal edges of the first sub-pattern and the first stripe patterns have equal spacings and widths. The positions of the second stripe patterns correspond to the positions of the blank pattern, and spacings or widths of the second stripe patterns are different from the spacings or widths of the first stripe patterns. Finally, the first stripe patterns and the second stripe pattern are outputted to a photomask. | 12-03-2015 |
Patent application number | Description | Published |
20110271237 | METHOD TO COMPENSATE OPTICAL PROXIMITY CORRECTION - A method to compensate optical proximity correction adapted for a photolithography process is provided. An integrated circuit (IC) layout firstly is provided. The IC layout includes active regions and a shallow trench isolation (STI) region. The STI region is a region except the active regions. The IC layout further includes ion implant regions which are overlapped with a part of the STI region and at least a part of the active regions. Subsequently, at least a photoresist line width compensation region is acquired in a photoresist covering region outside the ion implant regions according to the IC layout. Each photoresist line width compensation region is disposed in the STI region. Afterwards, the IC layout is corrected according to a width of the photoresist line width compensation region, a length of a side of the active region facing a side of the photoresist line width compensation region and a distance from the side of the photoresist line width compensation region to the active region facing the side. Finally, the corrected IC layout is transferred to a photomask. | 11-03-2011 |
20110296359 | METHOD AND COMPUTER-READABLE MEDIUM OF OPTICAL PROXIMITY CORRECTION - A method optical proximity correction includes the following steps. First, a layout of an integrated circuit with an exposure intensity specification is provided. The integrated circuit includes a plurality of patterns and each pattern has an exposure intensity distribution. Second, a quadratic polynomial equation of each exposure intensity distribution is approximated. Third, a local extreme intensity of each exposure intensity distribution is computed by fitting the quadratic polynomial equation. Fourth, the local extreme intensity is determined whether violating the exposure intensity specification or not. Then, the layout is corrected when the local extreme intensity violates the exposure intensity specification. | 12-01-2011 |
20120192123 | METHOD TO COMPENSATE OPTICAL PROXIMITY CORRECTION - A method to compensate optical proximity correction adapted for a photolithography process includes providing an integrated circuit (IC) layout. The IC layout includes active regions, a shallow trench isolation (STI) region and ion implant regions overlapped with a part of the STI region and at least a part of the active regions. Subsequently, at least a photoresist line width compensation region disposed in the STI region is acquired in a photoresist covering region outside the ion implant regions according to the IC layout. Afterwards, the IC layout is corrected according to a width of the photoresist line width compensation region, a length of a side of the active region facing a side of the photoresist line width compensation region and a distance from the side of the photoresist line width compensation region to the active region facing the side. Then, the corrected IC layout is transferred to a photomask. | 07-26-2012 |
20120295186 | DOUBLE PATTERNING MASK SET AND METHOD OF FORMING THEREOF - A double patterning mask set includes a first mask having a first set of via patterns, and a second mask having a second set of via patterns. The first set of via patterns includes at least two via patterns arranged along a diagonal direction, each of the at least two via patterns has at least a truncated corner. The first set of via patterns and the second set of via patterns are interlacedly arranged along a horizontal direction and a vertical direction. | 11-22-2012 |
20120319287 | SEMICONDUCTOR STRUCTURE AND METHOD FOR FABRICATING SEMICONDUCTOR LAYOUT - A method for fabricating a semiconductor layout includes providing a first layout having a plurality of line patterns and a second layout having a plurality of connection patterns, defining at least a first to-be-split pattern overlapping with the connection pattern among the line patterns, splitting the first to-be-split pattern at where the first to-be-split pattern overlapping with the connection pattern, decomposing the first layout to form a third layout and a fourth layout, and outputting the third layout and the further layout to a first mask and a second mask respectively. | 12-20-2012 |
20130024824 | Optical Proximity Correction Method - An optical proximity correction method is provided. A target pattern is provided, and then the target pattern is decomposed to a first pattern and a second pattern. The first pattern and the second pattern are alternately arranged in a dense region. Then, a compensation pattern is provided and it is determined whether the compensation pattern is added into the first pattern to become a first revised pattern, or into the second pattern to become a second revised pattern. Finally, the first revised pattern is output onto a first mask and the second revised pattern is output onto a second mask. | 01-24-2013 |
20140045105 | SEMICONDUCTOR STRUCTURE AND METHOD FOR FABRICATING SEMICONDUCTOR LAYOUT - A method for fabricating a semiconductor layout includes providing a first layout having a plurality of line patterns and a second layout having a plurality of connection patterns, defining at least a first to-be-split pattern overlapping with the connection pattern among the line patterns, splitting the first to-be-split pattern at where the first to-be-split pattern overlapping with the connection pattern, decomposing the first layout to form a third layout and a fourth layout, and outputting the third layout and the further layout to a first mask and a second mask respectively. | 02-13-2014 |