Patent application number | Description | Published |
20140032030 | System and Method for Detecting a Crest - A system for automated control of a machine having a ground engaging work implement includes an implement load sensor system. A controller determines a change in terrain based at least in part upon a change in the load on the ground engaging work implement. If the change in terrain exceeds a threshold, the controller generates an alert command signal. A method is also provided. | 01-30-2014 |
20140032058 | System and Method for Adjusting a Boundary for a Machine - A system for modifying a boundary of operation of a machine has a change in terrain sensor system. A controller determines a change in terrain based at least in part upon a change in terrain signal. If the change in terrain exceeds a threshold, the controller modifies the boundary of operation of the machine. A method is also provided. | 01-30-2014 |
20140032132 | System and Method for Operating a Machine - A system for automated control of a machine within a work area having a crest includes a first data map and a second data map. At least one sensor system generates operating data indicative of a change in terrain and a controller compares the operating data to the first data map while the machine is within a zone adjacent the crest. If the change in terrain exceeds a threshold, the controller generates an alert command signal. A method is also provided. | 01-30-2014 |
20140163773 | METHOD OF MANAGING A WORKSITE - A method is disclosed for calibrating a vehicle model used to autonomously control a machine on a worksite. The method may include measuring a first value indicative of an operating condition of the machine, predicting a second value, using the vehicle model, corresponding to the first value and indicative of the operating condition, and determining a difference between the first value and the second value. The method may also include autonomously directing the machine to a calibration site of the worksite in response to determining that the difference between the first value and the second value is greater than a predetermined threshold, wherein the calibration site is automatically selected from a plurality of locations at the worksite based on a suitability index of the calibration site. | 06-12-2014 |
20140163779 | METHOD OF MANAGING A WORKSITE - A method is disclosed for calibrating a vehicle model used to autonomously control a machine on a worksite. The method may include measuring a first value indicative of an operating condition of the machine, predicting a second value, using the vehicle model, corresponding to the first value and indicative of the operating condition, and determining a difference between the first value and the second value. The method may also include autonomously directing the machine to a calibration site of the worksite in response to determining that the difference between the first value and the second value is greater than a predetermined threshold, wherein the calibration site is automatically selected from a plurality of locations at the worksite based on a suitability index of the calibration site. | 06-12-2014 |
20140163805 | METHOD OF MODIFYING A WORKSITE - A method is disclosed of modifying a worksite for calibrating a vehicle model used to autonomously control a first machine on the worksite. The method may include receiving a signal from the first machine indicative of an aspect of the vehicle model in need of calibration. The method may also include determining, in response to receipt of the signal, that the worksite includes a calibration site having a characteristic corresponding to the aspect of the vehicle model, and that calibrating the aspect of the vehicle model requires modifying the characteristic of the calibration site. The method may further include autonomously modifying the characteristic of the calibration site with a second machine at the worksite, and directing the first machine to the modified calibration site for autonomous calibration of the aspect of the vehicle model. | 06-12-2014 |
20140174770 | System and Method for Optimizing a Cut Location - A system for determining a cut location at a work surface includes a position sensor and a controller. The controller stores a final design plane of the work surface and determines an actual profile of the work surface. A plurality of target profiles extending along a path are determined, each corresponding to a cut location. The target profiles are based at least in part upon the cut location, a loading profile, slot parameters, and the actual profile of the work surface. The controller is further configured to determine a lowest cost target profile and the lowest cost target profile defines an optimized cut location. A method is also provided. | 06-26-2014 |
20140180444 | System and Method for Modifying a Path for a Machine - A system for modifying a path of operation of a machine includes a position sensor and a controller. The controller stores the path of operation, receives a plurality of position signals as the work implement moves material along the path of operation, and determines the position of the work surface. The controller further determines an amount of material moved based at least in part upon the position of the work surface and modifies parameters used to determine a subsequent path of operation if the amount of material moved exceeds a predetermined amount. | 06-26-2014 |
20140180547 | System and Method for Estimating Material Characteristics - A system for determining material characteristics of a material of a work surface includes a position sensor and a controller. The controller stores a first estimate of the material characteristics and utilizes a planning system to determine an expected profile. The expected profile is based at least in part upon the first estimate of the material characteristics. The controller determines an actual profile of the work surface, compares the expected profile to the actual profile, and determines a second estimate of the material characteristics based at least in part upon the difference between the expected profile and the actual profile. | 06-26-2014 |
20140180548 | System and Method for Optimizing a Cut Location - A system for determining a cut location at a work surface includes a position sensor and a controller. The controller stores a desired operating parameter and a final design plane of the work surface and determines an actual profile of the work surface. The controller determines a plurality of target profiles corresponding to different cut locations. The target profiles are based at least in part upon the cut location, a loading profile, slot parameters, and the actual profile of the work surface. The controller further determines an optimized target profile relative to the desired operating parameter and the optimized target profile defines an optimized cut location. | 06-26-2014 |
20140375497 | Positioning Error Detection and Mitigation System and Method - A method for detecting and mitigating errors in a positioning system includes receiving a first signal from a global navigation satellite system (GNSS) indicative of a first position and a second signal from the GNSS indicative of a second position of a machine, determining a difference between the first position and the second position, detecting an error in a current position of the machine when the difference between the first and the second position exceeds a threshold of one of (a) a maximum distance given a maximum velocity, and (b) an actual distance determined based on an output of an inertial sensor on the machine, and mitigating the detected error in the current position of the machine by switching from an output of the positioning system to a position output determined based upon the output of the inertial sensor to update the current position. | 12-25-2014 |