Patent application number | Description | Published |
20100236603 | Concentrator-Type Photovoltaic (CPV) Modules, Receiver and Sub-Receivers and Methods of Forming Same - CPV modules include a back plate having an array of 1 mm | 09-23-2010 |
20100248484 | Methods of Forming Printable Integrated Circuit Devices and Devices Formed Thereby - Methods of forming integrated circuit devices include forming a sacrificial layer on a handling substrate and forming a semiconductor active layer on the sacrificial layer. A step is performed to selectively etch through the semiconductor active layer and the sacrificial layer in sequence to define an semiconductor-on-insulator (SOI) substrate, which includes a first portion of the semiconductor active layer. A multi-layer electrical interconnect network may be formed on the SOI substrate. This multi-layer electrical interconnect network may be encapsulated by an inorganic capping layer that contacts an upper surface of the first portion of the semiconductor active layer. A step can be performed to selectively etch through the capping layer and the first portion of the semiconductor active layer to thereby expose the sacrificial layer. The sacrificial layer may be selectively removed from between the first portion of the semiconductor active layer and the handling substrate to thereby define a suspended integrated circuit chip encapsulated by the capping layer. | 09-30-2010 |
20100283069 | Optical systems fabricated by printing-based assembly - The present invention provides optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchability. Optical systems of the present invention include, however, devices and device arrays provided on conventional rigid or semi-rigid substrates, in addition to devices and device arrays provided on flexible, shapeable and/or stretchable substrates. | 11-11-2010 |
20110266561 | Optical Systems Fabricated by Printing-Based Assembly - The present invention provides optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity. Optical systems of the present invention include, however, devices and device arrays provided on conventional rigid or semi-rigid substrates, in addition to devices and device arrays provided on flexible, shapeable and/or stretchable substrates. | 11-03-2011 |
20120115262 | LASER ASSISTED TRANSFER WELDING PROCESS - A method of printing transferable components includes pressing a stamp including at least one transferable semiconductor component thereon on a target substrate such that the at least one transferable component and a surface of the target substrate contact opposite surfaces of a conductive eutectic layer. During pressing of the stamp on the target substrate, the at least one transferable component is exposed to electromagnetic radiation that is directed through the transfer stamp to reflow the eutectic layer. The stamp is then separated from the target substrate to delaminate the at least one transferable component from the stamp and print the at least one transferable component onto the surface of the target substrate. Related systems and methods are also discussed. | 05-10-2012 |
20120327608 | Controlled Buckling Structures in Semiconductor Interconnects and Nanomembranes for Stretchable Electronics - In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices. | 12-27-2012 |
20130153277 | ELECTRICALLY BONDED ARRAYS OF TRANSFER PRINTED ACTIVE COMPONENTS - An active component array includes a target substrate having one or more contacts formed on a side of the target substrate, and one or more printable active components distributed over the target substrate. Each active component includes an active layer having a top side and an opposing bottom side and one or more active element(s) formed on or in the top side of the active layer. The active element(s) are electrically connected to the contact(s), and the bottom side is adhered to the target substrate. Related fabrication methods are also discussed. | 06-20-2013 |
20130153934 | PHOTOVOLTAIC DEVICES WITH OFF-AXIS IMAGE DISPLAY - A concentrated photovoltaic and display apparatus includes a backplane substrate, a plurality of photovoltaic elements distributed over the backplane substrate, a plurality of display elements distributed over the backplane substrate between the photovoltaic elements, and an optical element positioned over the backplane substrate, the photovoltaic elements, and the display elements. The optical element is configured to concentrate incident light propagating in a direction substantially parallel to an optical axis thereof onto the photovoltaic elements. The optical element is further configured to direct light reflected or emitted from the display elements in a direction that is not substantially parallel to the optical axis of the optical element. Related fabrication methods and arrays including the apparatus are also discussed. | 06-20-2013 |
20130182333 | APPARATUS AND PROCESS FOR PRODUCING PLANO-CONVEX SILICONE-ON-GLASS LENS ARRAYS - Coating a machined mold with a flowable, hardenable polymer coating produces an optically-smooth finish and maintains sharpness in upward-pointing features. These procedures produce molds for highly efficient plano-convex silicone-on-glass lens arrays in a fast and inexpensive manner in which an end-mill defines the shape of a lens, and the coating produces its smoothness. End-mill machining and coating lens-shaped features in plates that have movable pins produce molds with eject features disposed inside features that form templates for lens elements without significantly reducing optical performance. Additionally, machining and coating plates that have movable inserts produce molds for lens arrays with reduced volume and one or several rings in each lens element. | 07-18-2013 |
20130196474 | MATERIALS AND PROCESSES FOR RELEASING PRINTABLE COMPOUND SEMICONDUCTOR DEVICES - A method of fabricating transferable semiconductor devices includes providing a release layer including indium aluminum phosphide on a substrate, and providing a support layer on the release layer. The support layer and the substrate include respective materials, such as arsenide-based materials, such that the release layer has an etching selectivity relative to the support layer and the substrate. At least one device layer is provided on the support layer. The release layer is selectively etched without substantially etching the support layer and the substrate. Related structures and methods are also discussed. | 08-01-2013 |
20130221355 | STRUCTURES AND METHODS FOR TESTING PRINTABLE INTEGRATED CIRCUITS - A substrate includes an anchor area ( | 08-29-2013 |
20140034127 | SURFACE-MOUNTABLE LENS CRADLES AND INTERCONNECTION STRUCTURES FOR CONCENTRATOR-TYPE PHOTOVOLTAIC DEVICES - A concentrator-type photovoltaic (CPV) receiver includes a solar cell on a substrate. The solar cell includes a light receiving surface having a conductive terminal thereon. A conductive lens support frame is mounted on the substrate and includes an opening therein that exposes the light receiving surface of the solar cell. A lens element is provided on the support frame opposite the light receiving surface of the solar cell. The support frame is electrically connected to the conductive terminal on the light receiving surface and an electrical node on the substrate. The support frame also supports and self-aligns the lens element with the light receiving surface to concentrate incident light thereon. Related fabrication processes are also discussed. | 02-06-2014 |
20140048128 | SURFACE MOUNTABLE SOLAR RECEIVER WITH INTEGRATED THROUGH SUBSTRATE INTERCONNECT AND OPTICAL ELEMENT CRADLE - A concentrator-type photovoltaic (CPV) device includes a solar cell comprising a substrate including a light receiving surface and a mounting surface opposite the light receiving surface. A conductive through-substrate interconnect having insulated sidewalls extends through the substrate from the mounting surface to the light receiving surface to provide an electrical connection to a conductive terminal on the light receiving surface. A lens support structure is formed on the light receiving surface, and a lens element is provided on the support structure opposite the light receiving surface. The support structure supports and aligns the lens element with the light receiving surface to concentrate incident light thereon. Related fabrication processes are also discussed. | 02-20-2014 |
20140191236 | Methods and Devices for Fabricating and Assembling Printable Semiconductor Elements - The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations. | 07-10-2014 |
20140261627 | POWER AUGMENTATION IN CONCENTRATOR PHOTOVOLTAIC MODULES BY COLLECTION OF DIFFUSE LIGHT - A concentrator-type photovoltaic module includes a backplane substrate, a plurality of concentrator photovoltaic (CPV) receivers on a surface of the backplane substrate, and concentrating optics positioned over the surface of the backplane substrate and configured to focus on-axis incident light onto the CPV receivers. A plurality of non-concentrator photovoltaic (PV) cells are provided on the surface of the backplane substrate. The PV cells are positioned to receive light that passes off-axis through the concentrating optics. Related devices and methods are also discussed. | 09-18-2014 |
20140261628 | HIGH EFFICIENCY SOLAR RECEIVERS INCLUDING STACKED SOLAR CELLS FOR CONCENTRATOR PHOTOVOLTAICS - A solar receiver includes at least two electrically independent photovoltaic cells which are stacked. An inter-cell interface between the photovoltaic cells includes a multi-layer dielectric stack. The multi-layer dielectric stack includes at least two dielectric layers having different refractive indices. Related devices and fabrication methods are also discussed. | 09-18-2014 |
20140264763 | ENGINEERED SUBSTRATES FOR SEMICONDUCTOR EPITAXY AND METHODS OF FABRICATING THE SAME - In a method for fabricating an engineered substrate for semiconductor epitaxy, an array of seed structures is assembled on a surface of the substrate. The seed structures in the array have substantially similar directional orientations of their crystal lattices, and are spatially separated from each other. Semiconductor materials are selectively epitaxially grown on the seed structures, such that a rate of growth of the semiconductor materials on the seed structures is substantially higher than a rate of growth of the semiconductor materials on regions of the surface. The semiconductor materials assume a lattice constant and directional orientation of crystal lattice that are substantially similar or identical to those of the seed structures. Related devices and methods are also discussed. | 09-18-2014 |
20140264937 | Through-Silicon Vias and Interposers Formed by Metal-Catalyzed Wet Etching - Provided are methods for making a through-silicon via feature in a silicon substrate and related systems, such as by forming a noble metal structure on a silicon substrate support surface to generate silicon substrate contact regions that are in contact with or proximate to the noble metal structure; exposing at least a portion of the silicon substrate support surface and noble metal structure to an etchant to preferentially etch the silicon substrate contact regions compared to silicon substrate non-contact regions until the etch front reaches the silicon substrate bottom surface. | 09-18-2014 |
20140373898 | OPTICAL SYSTEMS FABRICATED BY PRINTING-BASED ASSEMBLY - Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity. | 12-25-2014 |
20140374872 | Controlled Buckling Structures in Semiconductor Interconnects and Nanomembranes for Stretchable Electronics - In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices. | 12-25-2014 |
20150079783 | Methods of Forming Printable Integrated Circuit Devices and Devices Formed Thereby - Methods of forming integrated circuit devices include forming a sacrificial layer on a handling substrate and forming a semiconductor active layer on the sacrificial layer. A step is performed to selectively etch through the semiconductor active layer and the sacrificial layer in sequence to define an semiconductor-on-insulator (SOI) substrate, which includes a first portion of the semiconductor active layer. A multi-layer electrical interconnect network may be formed on the SOI substrate. This multi-layer electrical interconnect network may be encapsulated by an inorganic capping layer that contacts an upper surface of the first portion of the semiconductor active layer. A step can be performed to selectively etch through the capping layer and the first portion of the semiconductor active layer to thereby expose the sacrificial layer. The sacrificial layer may be selectively removed from between the first portion of the semiconductor active layer and the handling substrate to thereby define a suspended integrated circuit chip encapsulated by the capping layer. | 03-19-2015 |