Patent application number | Description | Published |
20140357917 | EXTENDED CONTACT TIME RISER - A riser includes a housing in communication with a entry conduit and an exit conduit. The housing is defined by a holdup chamber having a volume of between about 1133 liters and about 45307 liters. The riser is designed to receive a hydrocarbon feed and a catalyst. An apparatus for fluid catalytic cracking includes a riser in fluid communication with a reactor vessel. A hydrocarbon feed stream and a catalyst travel through a first section of the riser at a first velocity of between about 1.5 m/sec to about 10 m/sec and through a second section of the riser at a second velocity of more than about 15 m/sec. A process for fluid catalytic cracking uses a riser with a holdup chamber. A hydrocarbon feed and a catalyst decrease in velocity in the holdup chamber to between 1.5 m/sec and 10 m/sec. | 12-04-2014 |
20150045598 | FLEXIBLE PROCESS FOR ENHANCING STEAM CRACKER AND PLATFORMING FEEDSTOCKS - A process for increasing the yields of light olefins or shifting to increase the hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit. The process includes the ability to convert components from the cracking stream to the reforming stream, and to convert components from the reforming stream to the cracking stream. | 02-12-2015 |
20150136652 | PROCESS FOR HYDROTREATING A COAL TAR STREAM - A process for hydrotreating a coal tar stream is described. A coal tar stream is provided, and the coal tar stream is expanded with an inert gas stream to provide an expanded liquid coal tar stream. The expanded liquid coal tar stream is hydrotreated. The coal tar stream can be reacted with a hydrocarbon solvent before it is expanded. | 05-21-2015 |
20150136653 | PROCESS FOR PYROLYSIS AND GASIFICATION OF A COAL FEED - A process for gasifying and pyrolyzing coal is described. A first coal feed is pyrolyzed into a coal tar stream and a coke stream in a pyrolysis zone. A second coal feed is gasified in a gasification zone to produce an effluent stream. Contaminants are removed from the effluent stream to provide a purified effluent stream. The purified effluent stream is introduced to the pyrolysis zone. | 05-21-2015 |
20150136656 | PROCESS FOR PYROLYSIS OF COAL - A process for pyrolyzing a coal feed is described. The coal feed is pyrolyzed into a coal tar stream and a coke stream in a pyrolysis zone. The coal tar stream is fractionated into at least a pitch stream. The pitch stream is hydrogenated, and the hydrogenated pitch stream is recycled into the pyrolysis zone. The hydrocarbon stream may be processed further by at least one of hydrotreating, hydrocracking, fluid catalytic cracking, alkylation, and transalkylation. | 05-21-2015 |
20150136657 | HYDROTREATING PROCESS AND MULTIFUNCTION HYDROTREATER - A multifunction hydrotreater includes a particulate removal zone having a particulate trap to remove particulate contaminants from a coal tar stream and a demetallizing zone including a demetallizing catalyst to remove organically bound metals from the departiculated stream. The demetallizing zone is positioned after the particulate removal zone. The hydrotreater also includes a hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation zone positioned after the demetallization zone, which includes at least one hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation catalyst to provide a hydrotreated coal tar stream. | 05-21-2015 |
20150136658 | PROCESS FOR REMOVING ASH AND HEAVY HYDROCARBONS FROM COAL TAR - A process for removing ash and heavy hydrocarbon compounds from coal is described. The coal feed, the coal tar stream, or a coal tar fraction is contacted with a solvent to dissolve a soluble portion of the coal tar stream, the ash and heavy hydrocarbons being insoluble in the solvent, the solvent selected from the group consisting of dimethyl sulfoxide, sulfolane, dimethyl formamide, glyme, diglyme, ionic liquids, and combinations thereof, with the proviso that an anion of the ionic liquid is not a dialkylphosphate. | 05-21-2015 |
20150136659 | HYDROPROCESS FOR A HYDROCARBON STREAM FROM COAL TAR - A coal tar process is described. A coal tar stream is provided, and the coal tar stream is separated to provide a plurality of hydrocarbon streams. At least one of the hydrocarbon streams is hydroprocessed in a fluidized bed hydroprocessing zone with a catalyst to provide a gaseous volatile product and a solid heavy hydrocarbon product absorbed onto the catalyst. The gaseous volatile product is separated from the catalyst. The catalyst is regenerating by separating the absorbed heavy hydrocarbon product from the catalyst. The regenerated catalyst is recycled into the hydroprocessing zone. | 05-21-2015 |
20150141699 | PROCESS FOR PYROLYSIS OF A COAL FEED - A process for pyrolyzing a coal feed is described. A coal feed is pyrolyzed into a coal tar stream and a coke stream in a pyrolysis zone. The coal tar stream is separated into at least a pitch stream comprising aromatic hydrocarbons. The pitch stream is reacted in a reaction zone to add at least one functional group to an aromatic ring of the aromatic hydrocarbons in the pitch stream. The functionalized pitch stream is recycled to the pyrolysis zone. | 05-21-2015 |
20150141700 | PROCESS FOR PRODUCING ALKYLATED AROMATIC COMPOUNDS - A process for producing alkylated aromatic compounds includes pyrolyzing a coal feed to produce a coke stream and a coal tar stream. The coal tar stream is hydrotreated and the resulting hydrotreated coal tar stream is cracked. A portion of the cracked coal tar stream is separated to obtain a fraction having an initial boiling point in the range of about 60° C. to about 180° C., and an aromatics-rich hydrocarbon stream is extracted by contacting the fraction with one or more solvents. The aromatics-rich hydrocarbon stream is contacted with an alkylating agent to produce an alkylated aromatic stream, or the aromatics-rich hydrocarbon stream is reacted with an aliphatic compound or methanol in the presence of a catalyst to produce a methylated aromatic stream. The alkylated aromatic stream, the methylated aromatic stream, or both are separated into at least a benzene stream, a toluene stream, and a xylenes stream. | 05-21-2015 |
20150141717 | HYDROCRACKING PROCESS FOR A HYDROCARBON STREAM - A process for transalkylating a coal tar stream is described. A coal tar stream is provided, and is fractionated to provide at least one hydrocarbon stream having polycyclic aromatics. The hydrocarbon stream is hydrotreated in a hydrotreating zone, and then hydrocracked in a hydrocracking zone. A light aromatics stream is added to the hydrocracking zone. The light aromatics stream comprises one or more light aromatics having a ratio of methyl/aromatic available position that is lower than a ratio of methyl/aromatic available position for the hydrotreated stream. The hydrocracked stream is transalkylated in the hydrocracking zone. | 05-21-2015 |
20150141723 | PROCESS FOR HYDROTREATING A COAL TAR STREAM - A process for hydrotreating a coal tar stream is described. A coal tar stream is provided, and the coal tar stream is fractionated into at least a light naphtha range hydrocarbon stream having a boiling point in the range of about 85° C. (185° F.) to about 137.8° C. (280° F.). The light naphtha range hydrocarbon stream is hydrotreated by contacting the light naphtha range hydrocarbon stream with a naphtha hydrotreating catalyst. | 05-21-2015 |
20150141724 | PROCESS FOR SELECTIVELY DEALKYLATING AROMATIC COMPOUNDS - A process for selectively dealkylating aromatic compounds includes providing a coal tar stream comprising aromatic compounds and hydrotreating the coal tar stream to reduce a concentration of one or more of organic sulfur, nitrogen, and oxygen in the coal tar stream, and to hydrogenate at least a portion of the aromatic compounds in the coal tar stream. The process further includes hydrocracking the hydrotreated coal tar stream to further hydrogenate the aromatic compounds and to crack at least one ring of multi-ring aromatic compounds to form single-ring aromatic compounds. The single-ring aromatic compounds present in the hydrocracked stream are then dealkylated to remove alkyl groups containing two or more carbon atoms. | 05-21-2015 |
20150141725 | PROCESS FOR PROVIDING AROMATICS FROM COAL TAR - A process for providing aromatics from a coal tar stream. A coal tar stream is provided, and the coal tar stream is fractionated into at least a naphtha range stream. The naphtha range stream is hydrotreated, and the hydrotreated naphtha range stream is separated to provide at least a naphthene rich stream. The naphthene rich stream is reformed or dehydrogenated to convert the naphthene. The dehydrogenated naphthene rich stream may be combined with a portion of a reformed crude oil hydrocarbon stream. | 05-21-2015 |
20150141726 | PROCESS FOR PRODUCING OLEFINS FROM A COAL FEED - A process for producing olefins from a coal feed includes providing a coal tar stream and fractionating the coal tar stream to provide a hydrocarbon stream that includes hydrocarbons having an initial boiling point of about 250° C. or greater. The hydrocarbon stream is hydrotreated to reduce a concentration of one or more of nitrogen, sulfur, and oxygen in the hydrocarbon stream, and the hydrotreated hydrocarbon stream is cracked in a fluidized catalytic cracking zone to produce an olefin stream. | 05-21-2015 |