Patent application number | Description | Published |
20080315184 | Switching Element - A switching element comprising: an insulative substrate; a first electrode and a second electrode provided on one surface of the insulative substrate; and an interelectrode gap which is provided between the first electrode and the second electrode, and which has a gap on the order of nanometers in which switching phenomenon of resistance occurs by applying predetermined voltage between the first electrode and the second electrode, wherein the one surface of the insulative substrate contains nitrogen. | 12-25-2008 |
20080316797 | Memory Element Array - Disclosed is a memory element array comprising a plurality of memory elements arranged in an array, wherein the memory elements are switching elements each including a gap of nanometer order in which a switching phenomenon of resistance is caused by applying a predetermined voltage between electrodes, and the memory element array is provided with tunnel elements respectively connected to the switching elements in series, each of the tunnel elements preventing generation of a sneak path current flowing to another switching element at a time of applying the predetermined voltage. | 12-25-2008 |
20090008248 | Enzyme Electrode and Enzyme Sensor - Disclosed is an enzyme electrode comprising: an electrode; a carbon nanotube layer including a plurality of carbon nanotubes extending directly from the electrode and/or a metallic catalyst immobilized on the electrode; and an enzyme immobilized in the carbon nanotube layer by being sandwiched between the carbon nanotubes. | 01-08-2009 |
20090052223 | Switching Element, Method of Manufacturing the Switching Element, and Memory Element Array - Disclosed is a switching element including: an insulative substrate; a first electrode and a second electrode provided to the insulative substrate; an interelectrode gap between the first electrode and the second electrode, comprising a gap of a nanometer order which causes switching phenomenon of resistance by applying a predetermined voltage between the first electrode and the second electrode; and a sealing member to seal the interelectrode gap such that the gap is retained. | 02-26-2009 |
20100165694 | Memory Cell Array - Disclosed is a memory cell array including: word lines and first and second bit lines respectively connected to memory cells, wherein each memory cell includes a MOS transistor and a switching element formed inside a contact hole, the switching element includes first and second conductive layers and a gap in which a resistance value is changed by applying a predetermined voltage, each word line is connected to a gate electrode, each first bit line is connected to a second electrode, each second bit line is connected to the second conductive layer, and data is written by supplying a write voltage to the first bit line connected to the selected memory cell and specifying the word line connected to the memory cell, and data is read by supplying a read voltage to the first bit lines connected to the memory cell and specifying the word line connected to the memory cells. | 07-01-2010 |
20100165695 | Memory Cell Array - Disclosed is a memory cell array including word and first bit lines and second bit lines respectively connected to memory cells, wherein each memory cell includes a MOS transistor and switching element having first and second conductive layers and a gap in which a resistance value changes by applying a predetermined voltage, and data is written by specifying the first bit line to connect it to a ground, specifying the word line and supplying a write voltage to the second bit lines, and read by specifying the first bit line to connect it to the sense amplifier, specifying the word line and supplying a read voltage lower than the write voltage to the second bit lines, and the word line is specified when the word line voltage becomes a gate threshold value voltage or more and a sum of a drive voltage and the gate threshold value voltage or less. | 07-01-2010 |
20100165696 | Memory Cell Array - Disclosed is a memory cell array including word and first bit lines and second bit lines respectively connected to memory cells, wherein each memory cell includes a MOS transistor and switching element having first and second conductive layers and a gap in which a resistance value changes by applying a predetermined voltage, and data is written by specifying the first bit line to connect it to a ground, specifying the word line and supplying a write voltage to the second bit lines, and read by specifying the word line, and specifying the first bit line to supply a read voltage lower than the write voltage to the second bit lines, and the word line is specified when the voltage of the word line becomes a gate threshold value voltage or more and a sum of a drive voltage and the gate threshold value voltage or less. | 07-01-2010 |
20100175991 | Enzyme Electrode and Enzyme Sensor - An enzyme electrode having excellent sensitivity, excellent stability, and a longer operating life, and an enzyme sensor using the enzyme electrode are provided. The enzyme electrode includes an electrode | 07-15-2010 |
20100257726 | Method of Fabricating Element Including Nanogap Electrodes - Disclosed is a fabrication method of an element with nanogap electrodes including a first electrode, a second electrode provided above the first electrode, and a gap provided between the first electrode and the second electrode, the gap being in an order of nanometer to allow resistive state to be switched by applying a predetermined voltage between the first electrode and the second electrode, the method comprising: forming the first electrode; forming a spacer on an upper surface of the first electrode; forming the second electrode in contact with an upper surface of the spacer; and removing the spacer to form the gap. | 10-14-2010 |
20110108399 | Switching Element - There is provided a switching element which facilitates integration with higher density and lamination in a device, the switching element including: an insulating substrate; a first electrode provided on the insulating substrate; a second electrode provided above the first electrode; and a between-electrode gap section provided between the first electrode and the second electrode and including a nanometer-scale gap for causing a switching phenomenon of a resistor by applying a prescribed voltage between the first electrode and the second electrode. | 05-12-2011 |
20110172996 | VOICE INPUT DEVICE, METHOD FOR MANUFACTURING THE SAME, AND INFORMATION PROCESSING SYSTEM - A voice input device, a method for manufacturing the same, and an information processing system are provided. The voice input device has a function of removing a noise component and includes a first microphone | 07-14-2011 |
20120026572 | Electrochromic Display Device - An electrochromic display device including: a first substrate; first electrodes parallely extending on the first substrate; a second substrate opposite to the first substrate; second electrodes parallely extending in a direction orthogonal to the first electrodes on the second substrate; and an electrochromic composition layer between the substrates, wherein the device is passive-matrix driven to perform a display by energization between the electrodes, and to perform erasing of the display by energization in a reverse direction, a pixel is formed in a portion where the first electrodes sterically intersect with the second electrodes, and metal electrical wires extending over the regions between the second electrodes and the second substrate along the second electrodes, each of metal electrical wires being conductively connected to each of the second electrodes corresponding to any one of the regions, and insulated from each of the second electrodes corresponding to the other regions. | 02-02-2012 |
20130155757 | Drive Method for Memory Element, and Storage Device Using Memory Element - A memory element includes an insulating substrate; a first electrode and a second electrode on the insulating substrate; and an inter-electrode gap portion that causes a change in resistance value between the first and second electrodes. Applied to the memory element from a pulse generating source is a first voltage pulse for shifting from a predetermined low-resistance state to a predetermined high-resistance state, and a second voltage pulse for shifting from the high-resistance state to the low-resistance state through a series-connected resistor, by which current flowing to the memory element after the change to a low resistance value is reduced. When shifting from the high to the low-resistance state, a voltage pulse is applied such that an electrical resistance between the pulse generating source and the memory element becomes higher than the electrical resistance shifting from the low to the high-resistance state. | 06-20-2013 |
20130170285 | Drive Method for Memory Element and Storage Device Using Memory Element - In a drive method for a memory element that includes an insulating substrate, a first electrode and a second electrode provided on the insulating substrate, and an inter-electrode gap portion provided between the first electrode and the second electrode and having a gap of the order of nanometers where a phenomenon of a change in resistance value between the first and second electrodes occurs, and that can perform a transition from a predetermined low-resistance state to a predetermined high-resistance state and a transition from the high-resistance state to the low-resistance state, a current pulse is applied to the memory element by a constant current circuit upon the transition from the high-resistance state to the low-resistance state. | 07-04-2013 |
20140293509 | Electric Double Layer Capacitor Electrode and Electric Double Layer Capacitor - An electric double layer capacitor electrode includes a positive electrode having a positive electrode active material layer including a positive electrode side porous body and a negative electrode having a negative electrode active material layer including a negative electrode side porous body. An oxidation-reduction substance causing an oxidation-reduction reaction during charging and discharging is adsorbed onto at least one of the positive electrode side porous body of the positive electrode active material layer and the negative electrode side porous body of the negative electrode active material layer. | 10-02-2014 |