Patent application number | Description | Published |
20110211869 | MANUFACTURING METHOD, SURFACE-EMITTING LASER DEVICE, SURFACE-EMITTING LASER ARRAY, OPTICAL SCANNER, AND IMAGE FORMING APPARATUS - A manufacturing method for manufacturing a surface-emitting laser device includes the steps of forming a laminated body in which a lower reflecting mirror, a resonator structure including an active layer, and an upper reflecting layer having a selective oxidized layer are laminated on a substrate; etching the laminated body to form a mesa structure having the selective oxidized layer exposed at side surfaces thereof; selectively oxidizing the selective oxidized layer from the side surfaces of the mesa structure to form a constriction structure in which a current passing region is surrounded by an oxide; forming a separating groove at a position away from the mesa structure; passivating an outermost front surface of at least a part of the laminated body exposed when the separating groove is formed; and coating a passivated part with a dielectric body. | 09-01-2011 |
20130061799 | MANUFACTURING METHOD OF GROUP 13 NITRIDE CRYSTAL - A method of manufacturing a group | 03-14-2013 |
20130062660 | GROUP 13 NITRIDE CRYSTAL AND SUBSTRATE THEREOF - A group 13 nitride crystal has a hexagonal crystal structure and at least contains nitrogen atom and at least a kind of metal atoms selected from a group consisting of B, Al, Ga, In, and Tl. The group 13 nitride crystal includes a first region located at an inner side of a cross section intersecting a c-axis, and a second region surrounding at least a part of an outer periphery of the first region, having a thickness larger than a maximum diameter of the first region, and having a carrier density higher than that of the first region. | 03-14-2013 |
20130064749 | GROUP 13 NITRIDE CRYSTAL AND GROUP 13 NITRIDE CRYSTAL SUBSTRATE - A group 13 nitride crystal having a hexagonal crystal structure and containing at least a nitrogen atom and at least a metal atom selected from a group consisting of B, Al, Ga, In, and Tl. The group 13 nitride crystal includes a first region disposed on an inner side in a cross section intersecting c-axis, a third region disposed on an outermost side in the cross section and having a crystal property different from that of the first region, and a second region disposed at least partially between the first region and the third region in the cross section, the second region being a transition region of a crystal growth and having a crystal property different from that of the first region and that of the third region. | 03-14-2013 |
20130065010 | GALLIUM NITRIDE CRYSTAL, GROUP 13 NITRIDE CRYSTAL, GROUP 13 NITRIDE CRYSTAL SUBSTRATE, AND MANUFACTURING METHOD - A gallium nitride crystal having a hexagonal crystal structure includes a first region located on an inner side of a cross section intersecting c-axis of the hexagonal crystal structure, and a second region surrounding at least a part of the outer periphery of the first region in the cross section. An emission spectrum of each of the first region and the second region with electron beam or ultraviolet light excitation has a first peak including a band edge emission of gallium nitride and a second peak located in a longer wavelength area than the first peak. A peak intensity of the first peak is smaller than a peak intensity of the second peak in the first region, and a peak intensity of the first peak is greater than a peak intensity of the second peak in the second region. | 03-14-2013 |
20130065036 | GROUP 13 NITRIDE CRYSTAL SUBSTRATE, MANUFACTURING METHOD OF GROUP 13 NITRIDE CRYSTAL, AND GALLIUM NITRIDE CRYSTAL - A gallium nitride crystal having a hexagonal crystal structure, wherein a full width at half maximum (FWHM) of X-ray rocking curve in a region at a side of one edge in a c-axis direction is smaller than the FWHM in a region at a side of the other edge in the c-axis direction, in at least one of m-plane outer peripheral surfaces of the hexagonal crystal structure. | 03-14-2013 |
20130070039 | SURFACE-EMITTING LASER DEVICE, SURFACE-EMITTING LASER ARRAY, OPTICAL SCANNER, IMAGE FORMING APPARATUS, AND METHOD FOR MANUFACTURING SURFACE-EMITTING LASER DEVICE - A surface-emitting laser device includes a transparent dielectric layer provided in an emitting region and configured to cause a reflectance at a peripheral part to be different from a reflectance at a central part in the emitting region. In the surface-emitting laser device, the thickness of a contact layer is different between a region having a relatively high reflectance and a region having a relatively low reflectance in the emitting region. The contact layer is provided on the high refractive index layer of an upper multilayer film reflecting mirror, and the total optical thickness of the high refractive index layer and the contact layer in the region having the relatively low reflectance is deviated from an odd number multiple of a one quarter oscillation wavelength of laser light emitted from the emitting region. | 03-21-2013 |
20130157397 | MANUFACTURING METHOD, SURFACE-EMITTING LASER DEVICE, SURFACE-EMITTING LASER ARRAY, OPTICAL SCANNER, AND IMAGE FORMING APPARATUS - A manufacturing method for manufacturing a surface-emitting laser device includes the steps of forming a laminated body in which a lower reflecting mirror, a resonator structure including an active layer, and an upper reflecting layer having a selective oxidized layer are laminated on a substrate; etching the laminated body to form a mesa structure having the selective oxidized layer exposed at side surfaces thereof; selectively oxidizing the selective oxidized layer from the side surfaces of the mesa structure to form a constriction structure in which a current passing region is surrounded by an oxide; forming a separating groove at a position away from the mesa structure; passivating an outermost front surface of at least a part of the laminated body exposed when the separating groove is formed; and coating a passivated part with a dielectric body. | 06-20-2013 |
20130243680 | GROUP 13 NITRIDE CRYSTAL AND GROUP 13 NITRIDE CRYSTAL SUBSTRATE - A group 13 nitride crystal has a hexagonal crystal structure containing a nitrogen atom and at least one type of metal atom selected from the group consisting of B, Al, Ga, In, and Tl. The group 13 nitride crystal has a basal plane dislocation in a plurality of directions. Dislocation density of the basal plane dislocation is higher than dislocation density of a threading dislocation of a c-plane. | 09-19-2013 |
20140077218 | GROUP 13 NITRIDE CRYSTAL, GROUP 13 NITRIDE CRYSTAL SUBSTRATE, AND METHOD OF MANUFACTURING GROUP 13 NITRIDE CRYSTAL - A group 13 nitride crystal having a hexagonal crystal structure contains at least a nitrogen atom and at least one metal atom selected from a group consisting of B, Al, Ga, In and Tl. Dislocation density of basal plane dislocations in a cross section parallel to a c-axis is 10 | 03-20-2014 |
20140219683 | SURFACE-EMITTING LASER DEVICE, SURFACE-EMITTING LASER ARRAY, OPTICAL SCANNER, IMAGE FORMING APPARATUS, AND METHOD FOR MANUFACTURING SURFACE-EMITTING LASER DEVICE - A surface-emitting laser device includes a transparent dielectric layer provided in an emitting region and configured to cause a reflectance at a peripheral part to be different from a reflectance at a central part in the emitting region. In the surface-emitting laser device, the thickness of a contact layer is different between a region having a relatively high reflectance and a region having a relatively low reflectance in the emitting region. The contact layer is provided on the high refractive index layer of an upper multilayer film reflecting mirror, and the total optical thickness of the high refractive index layer and the contact layer in the region having the relatively low reflectance is deviated from an odd number multiple of a one quarter oscillation wavelength of laser light emitted from the emitting region. | 08-07-2014 |
20140261157 | METHOD FOR PRODUCING GROUP 13 NITRIDE CRYSTAL AND APPARATUS FOR PRODUCING THE SAME - A method for producing a group 13 nitride crystal, comprises a crystal growth step of reacting nitrogen and a mixed melt containing at least a group 13 metal and at least one of an alkali metal and an alkaline earth metal, in the mixed melt, to grow a nitride crystal on a seed crystal, wherein at least one of the mixed melt and the seed crystal is rotated in the crystal growth step, a relative speed between the mixed melt and the seed crystal in the crystal growth step is repeatedly fluctuated in accordance with one or a plurality of types of predetermined patterns, and a maximum value of the relative speed indicated by the pattern is 0.01 m/s or more. | 09-18-2014 |
20140271439 | GROUP 13 NITRIDE CRYSTAL AND METHOD FOR PRODUCTION OF GROUP 13 NITRIDE CRYSTAL - A group 13 nitride crystal of hexagonal crystal including at least one or more metal atom selected from the group consisting of B, Al, Ga, In, and Tl, and a nitrogen atom, the group 13 nitride crystal comprises: a first region provided on the inner side of a cross section crossing a c-axis; a third region provided on an outermost side of the cross section; a second region provided between the first region and the third region at the cross section and having characteristics different from characteristics of the first region and the third region, wherein a shape formed by a boundary between the first region and the second region at the cross section is non-hexagonal. | 09-18-2014 |