Patent application number | Description | Published |
20130312604 | FLUOROPOLYMER GAS SEPARATION FILMS - The invention relates to a novel film, membrane or powder media made from fluoropolymers, especially PVDF-based and ETFE-based polymers, which are suitable for separating gases, especially carbon dioxide, from a gas mixture. The novel film has good selectivity, high permeance, good mechanical properties, and exhibits a high resistance to oxidant and acid attack. The separation film is especially useful in harsh and corrosive environments. | 11-28-2013 |
20130345381 | SYNTHESIS OF MAKING 2,3,3,3-TETRAFLUOROPROPENE CONTAINING FLUOROPOLYMERS - The invention relates to a method for synthesizing 2,3,3,3-tetrafluoropropene containing fluoropolymers using non-fluorinated surfactants in an emulsion process. No fluorinated surfactants are used in the process, and a persulfate initiator is used as the primary initiator. The process produces high molecular weight copolymers. | 12-26-2013 |
20140005325 | HIGH MELTING FLUOROPOLYMERS | 01-02-2014 |
Patent application number | Description | Published |
20120168295 | Ultra Low Profile Rocker Design - A rocker switch having a housing and a rocker extending from the housing. The rocker has a first side with a first end and a second end, a second side adjacent to the first side, and a channel. The channel is disposed on the second side of the rocker and has a first end and a second end. A pivot point is disposed on a crank. A pin, disposed on the crank, is located in a first side of the channel. The depression of the first end of the rocker causes a rotational movement of the channel in a curvilinear path around the pivot point, causing a rotational movement of the crank, moving the pin from the first end of the channel toward the second end of the channel. | 07-05-2012 |
20130180956 | Low-Profile Circuit Breaker - A circuit interrupter having a compact design. According to some implementations, the circuit interrupter includes a conductor from a terminal to a contact having a portion that is angled with respect to the housing sides. This allows a fastener sleeve used to secure the device housing to be positioned closer to the center of mass of the housing, reducing the area of the housing. In some implementations, an arc splitter is provided which includes conductive plates that are angled with respect to the housing sides, allowing the area of the housing to be reduced. In some implementations, a terminal is designed to accommodate a connection without being doubled back, reducing the clearance required for the terminal and the overall area of the circuit interrupter. | 07-18-2013 |
20140076700 | Circuit Breaker With Arc Shield - A circuit breaker which includes a shielding component. The shielding component includes an external portion which defines a space external to the circuit breaker housing. The external portion prevents insertion of the circuit breaker into a breaker box closer than the distances defining the space. This can have the advantage of preventing arcing from the breaker contacts to the breaker box. The external portion may also prevent insertion of the circuit breaker into a breaker box such that a vent in the circuit breaker housing is blocked. In some implementations, the shielding component contains an internal portion which extends into the circuit breaker housing and is disposed to impede debris generated by contact arcing, or other debris, from entering the mechanism of the circuit breaker. | 03-20-2014 |
20140251959 | Arc Shield - A circuit breaker includes a shielding component having an external portion which defines a space external to the circuit breaker housing and covers a vent in the circuit breaker housing to direct gasses and debris from the vent to an outlet. The external portion also prevents insertion of the circuit breaker into a breaker box closer than the distances defining the space. This can have the advantage of preventing arcing from the breaker contacts to the breaker box. The external portion may also prevent insertion of the circuit breaker into a breaker box such that a vent in the circuit breaker housing is blocked. In some implementations, the shielding component contains an internal portion which extends into the circuit breaker housing and is disposed to impede debris generated by contact arcing, or other debris, from entering the mechanism of the circuit breaker. | 09-11-2014 |
20150070114 | Remote Operated Circuit Breaker With Manual Reset - A circuit breaker having a movable contact arm for opening and closing the circuit which is controlled separately by a circuit breaker mechanism for circuit protection and by a switch lever mechanism which does not require actuation of the circuit breaker mechanism to function. The switch lever may also be activated remotely by a remote actuator, for example, a solenoid. A manual reset mechanism is provided so that, actuation of which, when power has been lost to the remote actuator when the remote actuator is in the off position, moves the remote actuator to the on position, thereby resetting the circuit to the closed state. | 03-12-2015 |
Patent application number | Description | Published |
20090043072 | Stabilized crosslinking composition - This invention relates to a crosslinking composition comprising and organic acid and a compound having the structure of Formula I: | 02-12-2009 |
20140302241 | AMINOPLAST CROSSLINKER RESIN COMPOSITIONS, PROCESS FOR THEIR PREPARATION, AND METHOD OF USE - This invention relates to aminoplast crosslinker resins compositions based on at least partially alkylated reaction products A of melamine, formaldehyde and an alkanol with the following parameters: the ratio of the amount of substance n(CH | 10-09-2014 |
20150361295 | ONE PACK LOW TEMPERATURE CURE COATING COMPOSITIONS - This invention relates to coating compositions comprising at least one aminoplast crosslinker resin A, binder resins B that have active hydrogen functionality, and a catalyst composition C, wherein the catalyst composition C is a mixture of an organic sulfonic acid C1, and an amine C2 which may be primary, secondary, or tertiary, and which must have a pKa value of not more than 10, and preferably not less than 4, a process for the preparation thereof, and to a method of use thereof. | 12-17-2015 |
Patent application number | Description | Published |
20090200275 | Solid state additive manufacturing system - A process for solid state deposition of a material onto a workpiece includes the steps of providing a rod of metallic deposition material, exerting pressure at one end of the rod to move the metallic deposition material into a deposition zone, rotating the rod while the pressure is being exerted to generate frictional heat when the rod contacts a surface of the workpiece, and raising the temperature of the metallic deposition material to reduce the amount of frictional heat which needs to be generated during the rotating step and to produce a microstructure which is substantially free of porosity and which has a fine grain size. | 08-13-2009 |
20100247322 | INTERNALLY SUPPORTED AIRFOIL AND METHOD FOR INTERNALLY SUPPORTING A HOLLOW AIRFOIL DURING MANUFACTURING - A hollow airfoil and a method for manufacturing a hollow airfoil is provided. The method includes the steps of: providing a first airfoil portion, which first portion has a wall with an interior surface and an exterior surface, and one or more ribs extending out from the interior surface; providing a second airfoil portion having a wall with an interior surface and an exterior surface; wherein the first airfoil portion and the second airfoil portion have mating geometries in which the one or more ribs extend between the interior surfaces of the walls of the first and second airfoil portion to form at least one internal cavity defined by the interior surface of the first portion wall, one or more of the ribs, and the interior surface of the second portion wall, and wherein the airfoil includes at least one exterior port disposed in one of the first airfoil portion or the second airfoil portion, or is formed between the first and second airfoil portions, which at least one exterior port is in fluid communication with the at least one cavity; disposing a support material within the at least one internal cavity allowing the support material to be in contact with the one or more ribs, which support material is operative to structurally support the one or more ribs; attaching the first and second airfoil portions together; and removing the support material from the at least one internal cavity through the at least one exterior port. | 09-30-2010 |
20110123347 | WELDING REPAIR METHOD OF AN INTEGRALLY BLADED ROTOR - A method of repairing a rotor blade, for example on an integrally bladed rotor, includes preparing a surface on a damaged area of the blade. The blade has first and second airfoil surfaces adjoining the prepared surface that are spaced apart a distance. An edge of a patch abuts the prepared surface to provide a weld interface defining a welding plane. First and second cover sheets respectively overlap the first and second airfoil surfaces. The first and second cover sheets adjoin the edge and the first and second airfoil surfaces. The blade, patch and first and second cover sheets are welded along the welding plane providing a welded joint at the weld interface. The first and second cover sheets are substantially unsecured to the first and second airfoil surfaces subsequent to the welding operation. | 05-26-2011 |
20110138624 | CONSUMABLE COLLAR FOR LINEAR FRICTION WELDING OF BLADE REPLACEMENT FOR DAMAGED INTEGRALLY BLADED ROTORS - A method of repairing an integrally bladed rotor includes the steps of placing a support collar around at least a leading and trailing edge portions of the blade stub, and performing linear friction welding to add a replacement airfoil to the blade stub. The linear friction welding is generally along a direction between the leading and trailing edges. In addition, the support collar leading and trailing edge portions are connected together. | 06-16-2011 |
20110138625 | REPAIR OF INTEGRALLY BLADED ROTORS - A method is provided for repairing a damaged rotor blade on an integrally bladed rotor by removing a damaged portion of a damaged blade leaving a blade stub extending outwardly from the disk and performing a linear friction welding operation to attach a replacement blade segment to the blade stub. The rotor may be disposed operation using a linear friction welding apparatus. The method includes disposing a support collar about the blade stub and securing the support collar to the linear friction welding apparatus prior to a commencement of the bonding operation. A lower surface of the support collar is contoured to mate with a portion of an outer circumference surface of the rotor disk. | 06-16-2011 |
20120205348 | SUPPORT STRUCTURE FOR LINEAR FRICTION WELDING - A method and apparatus for fixturing an airfoil stub during linear friction welding are described. Critical clamping support structures are manufactured by a direct digital manufacturing process such as direct metal laser sintering to minimize time and expense of the process. | 08-16-2012 |
20120279066 | WELDING Ti-6246 INTEGRALLY BLADED ROTOR AIRFOILS - A method is disclosed for welding a first metal to a Ti-6246 alloy airfoil. The method consists of depositing weld metal by fusion welding and reshaping the airfoil to predetermined dimensions. A post weld heat treatment is applied to relieve residual stresses. Surface treatment such as laser shock peening introduces residual surface compressive stresses to enhance the mechanical integrity of the airfoil. | 11-08-2012 |
20130022339 | LOCAL HEAT TREATMENT OF IBR BLADE USING INFRARED HEATING - A device and method for locally heat treating at least one airfoil in an integrally bladed rotor device. A pair of IR heat sources are positioned to direct IR heat rays in the direction where local heat treatment is required. A pair of parabolic mirrors are positioned to direct the IR heat rays on to the metal component. The heat treating is useful after welding the airfoil on to the rotor device. | 01-24-2013 |
20150190891 | Repair of Casting Defects - A method of repairing defects in a casting formed from non-weldable or difficult-to-weld alloys is disclosed. The method includes removing the defect from the casting thereby forming a cavity in the casting, placing a filler material in the cavity and fusion welding the filler material in the cavity. The fusion welding produces surface cracks on the casting and sub-surface cracks in the casting. The method then includes brazing at least some of the surface cracks on the casting and processing the casting with a hot isostatic pressure (HIP) process to close at least some of the sub-surface cracks in the casting. | 07-09-2015 |
Patent application number | Description | Published |
20080236619 | COBALT CAPPING SURFACE PREPARATION IN MICROELECTRONICS MANUFACTURE - Cleaning compositions and methods in connection with cobalt-based capping of interconnects in integrated circuit semiconductor devices. | 10-02-2008 |
20090035940 | COPPER METALLIZATION OF THROUGH SILICON VIA - A method for metallizing a through silicon via feature in a semiconductor integrated circuit device substrate comprising immersing the semiconductor integrated circuit device substrate into an electrolytic copper deposition composition comprising a source of copper ions, an organic sulfonic acid or inorganic acid, or one or more organic compounds selected from among polarizers and/or depolarizers, and chloride ions. | 02-05-2009 |
20100075496 | SURFACE PREPARATION PROCESS FOR DAMASCENE COPPER DEPOSITION - A method is disclosed for metallizing a substrate comprising an interconnect feature in the manufacture of a microelectronic device, wherein the interconnect feature comprises a bottom, a sidewall, and a top opening having a diameter, D. The method comprises the following steps: depositing a barrier layer on the bottom and the sidewall of the interconnect feature, the barrier layer comprising a metal selected from the group consisting of ruthenium, tungsten, tantalum, titanium, iridium, rhodium, and combinations thereof; contacting the substrate comprising the interconnect feature comprising the bottom and sidewall having the barrier layer thereon with an aqueous composition comprising a reducing agent and a surfactant; and depositing copper metal onto the bottom and the sidewall of the interconnect feature having the barrier layer thereon. | 03-25-2010 |
20100126872 | ELECTRODEPOSITION OF COPPER IN MICROELECTRONICS WITH DIPYRIDYL-BASED LEVELERS - A method for metallizing a via feature in a semiconductor integrated circuit device substrate, wherein the semiconductor integrated circuit device substrate comprises a front surface, a back surface, and the via feature and wherein the via feature comprises an opening in the front surface of the substrate, a sidewall extending from the front surface of the substrate inward, and a bottom. The method comprises contacting the semiconductor integrated circuit device substrate with an electrolytic copper deposition chemistry comprising (a) a source of copper ions and (b) a leveler compound, wherein the leveler compound is a reaction product of a dipyridyl compound and an alkylating agent; and supplying electrical current to the electrolytic deposition chemistry to deposit copper metal onto the bottom and sidewall of the via feature, thereby yielding a copper filled via feature. | 05-27-2010 |
20100285660 | COPPER DEPOSITION FOR FILLING FEATURES IN MANUFACTURE OF MICROELECTRONIC DEVICES - A method for plating copper onto a semiconductor integrated circuit device substrate by forming an initial metal deposit in the feature which has a profile comprising metal on the bottom of the feature and a segment of the sidewalls having essentially no metal thereon, electrolessly depositing copper onto the initial metal deposit to fill the feature with copper. A method for plating copper onto a semiconductor integrated circuit device substrate by forming a deposit comprising a copper wettable metal in the feature, forming a copper-based deposit on the top-field surface, and depositing copper onto the deposit comprising the copper wettable metal to fill the feature with copper. | 11-11-2010 |
20120043218 | COPPER ELECTRODEPOSITION IN MICROELECTRONICS - A method and composition for electroplating Cu onto a substrate in the manufacture of a microelectronic device involving and electrolytic solution containing a source of Cu ions and a substituted pyridyl polymer compound for leveling. | 02-23-2012 |
20130199935 | COPPER FILLING OF THROUGH SILICON VIAS - A method for metallizing a through silicon via feature in a semiconductor integrated circuit device substrate. The method comprises immersing the semiconductor integrated circuit device substrate into an electrolytic copper deposition composition, wherein the through silicon via feature has an entry dimension between 1 micrometers and 100 micrometers, a depth dimension between 20 micrometers and 750 micrometers, and an aspect ratio greater than about 2:1; and supplying electrical current to the electrolytic deposition composition to deposit copper metal onto the bottom and sidewall for bottom-up filling to thereby yield a copper filled via feature. The deposition composition comprises (a) a source of copper ions; (b) an acid selected from among an inorganic acid, organic sulfonic acid, and mixtures thereof; (c) an organic disulfide compound; (d) a compound selected from the group consisting of a reaction product of benzyl chloride and hydroxyethyl polyethyleneimine, a quaternized dipyridyl compound, and a combination thereof; and (d) chloride ions. | 08-08-2013 |
20140120722 | PROCESS FOR FILLING VIAS IN THE MICROELECTRONICS - A process for metalizing a through silicon via feature in a semiconductor integrated circuit device, the process including, during the filling cycle, reversing the polarity of circuit for an interval to generate an anodic potential at said metalizing substrate and desorb leveler from the copper surface within the via, followed by resuming copper deposition by re-establishing the surface of the copper within the via as the cathode in the circuit, thereby yielding a copper filled via feature. | 05-01-2014 |
Patent application number | Description | Published |
20140167265 | METHODS OF FORMING A BI-LAYER CAP LAYER ON COPPER-BASED CONDUCTIVE STRUCTURES AND DEVICES WITH SUCH A CAP LAYER - One illustrative device disclosed herein includes a layer of insulating material, a copper-based conductive structure positioned in the layer of insulating material and a bi-layer cap layer comprised of a first layer of material positioned on the copper-based conductive structure and a second layer of material positioned on the first layer of material. One method disclosed herein includes forming a copper-based conductive structure in a first layer of insulating material, forming a first layer of a bi-layer cap layer on the copper-based conductive structure, the first layer being comprised of silicon carbon nitride, forming a second layer of the bi-layer cap layer on the first layer, the second layer being comprised of silicon nitride, and forming a second layer of insulating material above the second layer. | 06-19-2014 |
20150069608 | THROUGH-SILICON VIA STRUCTURE AND METHOD FOR IMPROVING BEOL DIELECTRIC PERFORMANCE - An improved through-silicon via (TSV) and method of fabrication are disclosed. A back-end-of-line (BEOL) stack is formed on a semiconductor substrate. A TSV cavity is formed in the BEOL stack and semiconductor substrate. A conformal protective layer is disposed on the interior surface of the TSV cavity, along the BEOL stack and partway into the semiconductor substrate. The conformal protective layer serves to protect the dielectric layers within the BEOL stack during subsequent processing, improving the integrated circuit quality and product yield. | 03-12-2015 |
20150097274 | THROUGH-SILICON VIA STRUCTURE AND METHOD FOR IMPROVING BEOL DIELECTRIC PERFORMANCE - An improved through-silicon via (TSV) is disclosed. A semiconductor substrate has a a back-end-of-line (BEOL) stack formed thereon. The BEOL stack and semiconductor substrate has a TSV cavity formed thereon. A conformal protective layer is disposed on the interior surface of the TSV cavity, along the BEOL stack and partway into the semiconductor substrate. The conformal protective layer serves to protect the dielectric layers within the BEOL stack during subsequent processing, improving the integrated circuit quality and product yield. | 04-09-2015 |