Patent application number | Description | Published |
20120176148 | METHODS AND APPARATUS FOR DETECTION OF GASEOUS CORROSIVE CONTAMINANTS - A corrosion sensor includes a plurality of metal strips having different thicknesses. A first metal strip with the least thickness is first employed to provide sensitive corrosion detection. After an exposed portion of the first metal strip is consumed, a second metal strip having a second least thickness can be employed to provide continued sensitive corrosion detection employing a remaining un-corroded portion of the second metal strip. The plurality of metal strips can be sequentially employed as exposed portions of thinner metal strips become unusable through complete corrosion and un-corroded exposed portions of thicker metal strips become thin enough to provide sensitive corrosion detection. | 07-12-2012 |
20120253673 | METHOD AND APPARATUS FOR THREE DIMENSIONAL DYNAMIC MEASUREMENTS IN WATER SYSTEM - Techniques are disclosed for measuring one or more physical properties of a water system. For example, in one embodiment, a method comprises the following steps. A measurement platform is positioned at a first location of a given water system, wherein the measurement platform comprises a plurality of sensor devices distributed over a three dimensional space and configured to acquire data relating to one or more physical properties of the water system. A first set of measurement data is acquired from the water system at the first location via at least a portion of the plurality of sensor devices of the measurement platform. The measurement platform is moved along a predetermined path to at least a second location in the water system. At least a second set of measurement data is acquired from the water system at the second location via at least a portion of the plurality of sensor devices of the measurement platform. The method may further comprise generating an image based on the first set of measurement data and the at least a second set of measurement data, wherein the image represents the one or more physical properties of the water system. | 10-04-2012 |
20130265064 | CORROSION DETECTOR APPARATUS FOR UNIVERSAL ASSESSMENT OF POLLUTION IN DATA CENTERS - A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels. | 10-10-2013 |
20140111229 | CORROSION SENSORS - Corrosion sensor apparatus for detection of contamination affecting metal based components and devices. For example, an apparatus includes: a set of corrosion sensor elements, wherein a width of a first corrosion sensor element is different than a width of a second corrosion sensor element, wherein each corrosion sensor element is susceptible to corrosion caused by an operating environment of the corrosion sensor elements; and a set of reference elements wherein a width of a first reference sensor element is substantially equal to the width of the first corrosion sensor element and a width of a second reference sensor element is substantially equal to the width of the second corrosion sensor element, wherein each reference sensor element is not substantially susceptible to corrosion caused by the operating environment of the corrosion sensor elements. | 04-24-2014 |
20140163903 | REAL TIME NUMERICAL COMPUTATION OF CORROSION RATES FROM CORROSION SENSORS - A method for determining a corrosion rate includes receiving an input signal including corrosion data from a sensor. A signal-to-noise ratio (SNR) and a type of noise is determined from the input signal. A corrosion rate computation method is selected based on the SNR and the type of noise. The corrosion rate is determined, using a processor, based on a selected corrosion rate computation method. | 06-12-2014 |
20140230524 | METHODS AND APPARATUS FOR DETECTION OF GASEOUS CORROSIVE CONTAMINANTS - A corrosion sensor includes a plurality of metal strips having different thicknesses. A first metal strip with the least thickness is first employed to provide sensitive corrosion detection. After an exposed portion of the first metal strip is consumed, a second metal strip having a second least thickness can be employed to provide continued sensitive corrosion detection employing a remaining un-corroded portion of the second metal strip. The plurality of metal strips can be sequentially employed as exposed portions of thinner metal strips become unusable through complete corrosion and un-corroded exposed portions of thicker metal strips become thin enough to provide sensitive corrosion detection. | 08-21-2014 |
20140252114 | IRRIGATION SYSTEM AND METHOD - A method of operating an irrigation system is provided and includes coupling one or more lateral driplines to a main irrigation line, dividing each lateral dripline into zones and providing each lateral dripline with a plurality of replaceable emitters at each zone, disposing a plurality of controllable valves along each of the one or more lateral driplines at zone borders and actuating each one of the plurality of controllable valves to thereby activate corresponding emitters in the associated zone. | 09-11-2014 |
20140257699 | WIRELESS NETWORK OF LOW POWER SENSING AND ACTUATING MOTES - Embodiments include a wireless mote network having a plurality of motes, wherein each of the plurality of motes includes a processing unit in communication with a communications device. Each of the motes includes at least a sensor configured to monitor an environmental condition in an area around the mote or an actuator configured to control one or more external systems. The wireless mote network also includes a central communications device configured to communicate with one or more of the motes within a range of the central communications device and a controller configured to communicate with the central communications device, to receive one or more signals indicative of the environmental condition of one or more of the plurality of motes, and to transmit one or more control signals indicating an operation of the actuator to one or more of the plurality of motes. | 09-11-2014 |
20140257754 | WIRELESS NETWORK OF LOW POWER SENSING AND ACTUATING MOTES - Embodiments include a wireless mote network having a plurality of motes, wherein each of the plurality of motes includes a processing unit in communication with a communications device. Each of the motes includes at least a sensor configured to monitor an environmental condition in an area around the mote or an actuator configured to control one or more external systems. The wireless mote network also includes a central communications device configured to communicate with one or more of the motes within a range of the central communications device and a controller configured to communicate with the central communications device, to receive one or more signals indicative of the environmental condition of one or more of the plurality of motes, and to transmit one or more control signals indicating an operation of the actuator to one or more of the plurality of motes. | 09-11-2014 |
20140283682 | FILTER REPLACEMENT LIFETIME PREDICTION - Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air. | 09-25-2014 |