Patent application number | Description | Published |
20090154733 | AMPLIFIER CIRCUIT AND METHODS OF OPERATION THEREOF - A signal amplifying circuit and associated methods and apparatuses, the circuit comprising: a signal path extending from an input terminal to an output terminal, a gain controller arranged to control the gain applied along the signal path in response to a control signal; an output stage within the signal path for generating the output signal, the output stage having a gain that is substantially independent of its supply voltage, and a variable voltage power supply comprising a charge pump for providing positive and negative output voltages, the charge pump comprising a network of switches that is operable in a number of different states and a controller for operating the switches in a sequence of the states so as to generate positive and negative output voltages together spanning a voltage approximately equal to the input voltage. | 06-18-2009 |
20090212859 | AMPLIFIER CIRCUIT AND METHODS OF OPERATION THEREOF - A signal amplifying circuit and associated methods and apparatuses, the circuit comprising: a signal path extending from an input terminal to an output terminal, a gain controller arranged to control the gain applied along the signal path in response to a control signal; an output stage within the signal path for generating the output signal, the output stage having a gain that is substantially independent of its supply voltage, and a variable voltage power supply comprising a charge pump for providing positive and negative output voltages, the charge pump comprising a network of switches that is operable in a number of different states and a controller for operating the switches in a sequence of the states so as to generate positive and negative output voltages together spanning a voltage approximately equal to the input voltage. | 08-27-2009 |
20100194479 | AMPLIFIER CIRCUIT AND METHODS OF OPERATION THEREOF - A signal amplifying circuit and associated methods and apparatuses, the circuit comprising: a signal path extending from an input terminal to an output terminal, a gain controller arranged to control the gain applied along the signal path in response to a control signal; an output stage within the signal path for generating the output signal, the output stage having a gain that is substantially independent of its supply voltage, and a variable voltage power supply comprising a charge pump for providing positive and negative output voltages, the charge pump comprising a network of switches that is operable in a number of different states and a controller for operating the switches in a sequence of the states so as to generate positive and negative output voltages together spanning a voltage approximately equal to the input voltage. | 08-05-2010 |
20110103619 | AMPLIFIER CIRCUIT AND METHODS OF OPERATION THEREOF - A signal amplifying circuit and associated methods and apparatuses, the circuit comprising: a signal path extending from an input terminal to an output terminal, a gain controller arranged to control the gain applied along the signal path in response to a control signal; an output stage within the signal path for generating the output signal, the output stage having a gain that is substantially independent of its supply voltage, and a variable voltage power supply comprising a charge pump for providing positive and negative output voltages, the charge pump comprising a network of switches that is operable in a number of different states and a controller for operating the switches in a sequence of the states so as to generate positive and negative output voltages together spanning a voltage approximately equal to the input voltage. | 05-05-2011 |
20110115563 | AMPLIFIER CIRCUIT AND METHODS OF OPERATION THEREOF - A signal amplifying circuit and associated methods and apparatuses, the circuit comprising: a signal path extending from an input terminal to an output terminal, a gain controller arranged to control the gain applied along the signal path in response to a control signal; an output stage within the signal path for generating the output signal, the output stage having a gain that is substantially independent of its supply voltage, and a variable voltage power supply comprising a charge pump for providing positive and negative output voltages, the charge pump comprising a network of switches that is operable in a number of different states and a controller for operating the switches in a sequence of the states so as to generate positive and negative output voltages together spanning a voltage approximately equal to the input voltage. | 05-19-2011 |
20110234305 | CHARGE PUMP CIRCUIT AND METHODS OF OPERATION THEREOF - A charge pump circuit, and associated method and apparatuses, for providing a split-rail voltage supply, the circuit having a network of switches that is operable in a number of different states and a controller for operating the switches in a sequence of said states so as to generate positive and negative output voltages together spanning a voltage approximately equal to the input voltage and centered on the voltage at the common terminal. | 09-29-2011 |
20110235827 | AMPLIFIER CIRCUIT AND METHODS OF OPERATION THEREOF - A signal amplifying circuit and associated methods and apparatuses, the circuit comprising: a signal path extending from an input terminal to an output terminal, a gain controller arranged to control the gain applied along the signal path in response to a control signal; an output stage within the signal path for generating the output signal, the output stage having a gain that is substantially independent of its supply voltage, and a variable voltage power supply comprising a charge pump for providing positive and negative output voltages, the charge pump comprising a network of switches that is operable in a number of different states and a controller for operating the switches in a sequence of the states so as to generate positive and negative output voltages together spanning a voltage approximately equal to the input voltage. | 09-29-2011 |
20130314151 | CHARGE PUMP CIRCUIT AND METHODS OF OPERATIONS THEREOF - A charge pump circuit, and associated method and apparatuses, for providing a split-rail voltage supply, the circuit having a network of switches that is operable in a number of different states and a controller for operating the switches in a sequence of said states so as to generate positive and negative output voltages together spanning a voltage approximately equal to the input voltage and centered on the voltage at the common terminal. | 11-28-2013 |
20140152388 | AMPLIFIER CIRCUIT AND METHODS OF OPERATION THEREOF - A signal amplifying circuit and associated methods and apparatuses, the circuit comprising: a signal path extending from an input terminal to an output terminal, a gain controller arranged to control the gain applied along the signal path in response to a control signal; an output stage within the signal path for generating the output signal, the output stage having a gain that is substantially independent of its supply voltage, and a variable voltage power supply comprising a charge pump for providing positive and negative output voltages, the charge pump comprising a network of switches that is operable in a number of different states and a controller for operating the switches in a sequence of the states so as to generate positive and negative output voltages together spanning a voltage approximately equal to the input voltage. | 06-05-2014 |
Patent application number | Description | Published |
20100020912 | CLOCK SYNCHRONISER - A clock synchroniser, for generating a local clock signal synchronised to a received clock signal, is described and claimed, along with a corresponding clock synchronisation method. The clock synchroniser incorporates a reference oscillator providing a reference signal, and a synthesiser circuit arranged to synthesise a local clock signal from the reference signal. The synthesiser circuit comprises a phase-locked-loop circuit, including a phase detector receiving the reference signal, and a controllable divider arranged in a feedback path from a controlled oscillator to the phase detector, the divider being controllable to set a frequency division value N along the path to determine a ratio of the local clock frequency to the reference frequency. The clock synchroniser also incorporates a clock comparison circuit adapted to generate a digital signal indicative of an asynchronism between the local and remote clock signals. A control link is arranged to link the clock comparison circuit to the divider. This link receives the digital signal and provides a control signal to the divider to adjust the frequency division value N according to the digital signal, to alter the local clock frequency and reduce the asynchronism. Preferably, the clock comparison circuit compares the periods of the local and received clock signals. | 01-28-2010 |
20110221487 | CLOCK SYNCHRONISER - A clock synchroniser for generating a local clock signal synchronised to a received clock signal. The clock synchroniser incorporates a reference oscillator providing a reference signal, and a synthesiser circuit arranged to synthesise a local clock signal from the reference signal. The synthesiser circuit comprises a phase-locked-loop circuit, including a phase detector receiving the reference signal, and a controllable divider arranged in a feedback path from a controlled oscillator to the phase detector, the divider being controllable to set a frequency division value N along the path to determine a ratio of the local clock frequency to the reference frequency. The clock synchroniser also incorporates a clock comparison circuit adapted to generate a digital signal indicative of an asynchronism between the local and received clock signals. A control link is arranged to link the clock comparison circuit to the divider. This link receives the digital signal and provides a control signal to the divider to adjust the frequency division value N according to the digital signal, to alter the local clock frequency and reduce the asynchronism. | 09-15-2011 |
Patent application number | Description | Published |
20090071722 | WELLBORE CONSOLIDATING TOOL FOR ROTARY DRILLING APPLICATIONS - A subpart of a drill string is described having an outer circumferential surface which is contoured and adapted to engage the wall of the borehole with a small angle of attack while exerting during rotary drilling operations an compacting pressure on mud cake and/or cuttings present in the annulus between the drill string and the borehole. | 03-19-2009 |
20090095474 | System and Method for Fracturing While Drilling - A method of fracturing a formation while drilling a wellbore includes the steps of: providing a bottomhole assembly (“BHA”) having a reamer positioned above a pilot hole assembly; connecting the BHA to a drill string; actuating the BHA to drill a first wellbore section with the reamer and to drill a pilot hole with the pilot hole assembly; hydraulically sealing the pilot hole from the first wellbore section; and fracturing the formation proximate the pilot hole. | 04-16-2009 |
20100282512 | SYSTEM AND METHOD FOR DETERMINING MOVEMENT OF A DRILLING COMPONENT IN A WELLBORE - A system and a method determine movement of a drilling component, such as, for example, a tool, a drill bit or other wellbore device, within a wellbore. The system and method may process information obtained from the wellbore by using, for example, a numerical processing algorithm. The information may be data acquired during drilling of the wellbore. Rig surface data recording systems may track the position of the drill bit, the BHA and/or other component of the drill string during the time the component is within the wellbore. Downhole measuring devices may record data at various positions along the BHA and above the drill bit as a function of time. | 11-11-2010 |
20130047696 | INTERVAL DENSITY PRESSURE MANAGEMENT METHODS - A method for estimating equivalent top of fluid level or a theoretical surface annular back pressure in a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The pressure measurements may then be processed to compute the equivalent top of fluid level and/or theoretical surface annular back pressure of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of values corresponding to various wellbore intervals. The equivalent top of fluid level and/or theoretical surface annular back pressures may be used in automated managed pressure drilling operations. | 02-28-2013 |
20130048380 | WELLBORE INTERVAL DENSITIES - A method for estimating one or more interval densities in a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The pressure measurements may then be processed to obtain an interval density of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of interval densities corresponding to various wellbore intervals. | 02-28-2013 |
20130054146 | METHODS FOR EVALUATING CUTTINGS DENSITY WHILE DRILLING - A method evaluating a cuttings density while drilling a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The pressure measurements may then be processed to obtain an interval density of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of interval densities corresponding to various wellbore intervals. The interval density may be measured while drilling and may be further processed to compute a cuttings density in the annulus. Moreover, changes in the computed interval density with time while drilling may be used as an indicator of a change in cuttings density. | 02-28-2013 |
20130090854 | METHODS FOR EVALUATING BOREHOLE VOLUME CHANGES WHILE DRILLING - A method identifying a wellbore volume change while drilling a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The wellbore volume change may include, for example, a borehole washout or a borehole pack-off. The pressure measurements may then be processed to obtain an interval density of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of interval densities corresponding to various wellbore intervals. The interval densities may be measured while drilling and may be further evaluated as an indicator of a wellbore volume change. | 04-11-2013 |
20130090855 | METHODS FOR EVALUATING INFLOW AND OUTFLOW IN A SUBTERRAEAN WELLBORE - A method for evaluating inflow or outflow in a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The pressure measurements may then be processed to obtain an interval density of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of interval densities corresponding to various wellbore intervals. The interval density may be measured during static conditions or while drilling and may be further processed to compute a density of an inflow constituent in the annulus. Changes in the computed interval density with time may be used as an indicator of either an inflow event or an outflow event. | 04-11-2013 |