Patent application number | Description | Published |
20090292303 | STRETCH RESISTANT THERAPEUTIC DEVICE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. | 11-26-2009 |
20100004675 | STRETCH RESISTANT THERAPEUTIC DEVICE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. | 01-07-2010 |
20120022581 | STRETCH RESISTANT THERAPEUTIC DEVICE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. | 01-26-2012 |
20120035648 | STRETCH RESISTANT THERAPEUTIC DEVICE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. | 02-09-2012 |
20120046686 | STRETCH RESISTANT THERAPEUTIC DEVICE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. | 02-23-2012 |
20130131715 | STRETCH RESISTANT THERAPEUTIC DEVICE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. | 05-23-2013 |
20130304110 | STRETCH RESISTANT THERAPEUTIC DEVICE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. | 11-14-2013 |
20140142618 | Systems and Methods for Improved Vessel Access Closure - Embodiments are described for closing vascular access ports, such as arteriotomies, which involve placement and deployment of an expandable device configured to prevent blood flow across a subject arteriotomy while also keeping disturbance of intravascular flow to a minimum. Suitable prostheses may comprise one or more frames constructed from lengths of flexible materials, such as shape memory alloys or polymers. Such frames may be coupled to sheetlike or tube-like structures configured to spread loads, minimize thrombosis which may be related to intravascular flow, and maintain hemostasis. | 05-22-2014 |
Patent application number | Description | Published |
20120197286 | STRETCH RESISTANT THERAPEUTIC DEVICE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. | 08-02-2012 |
20120197287 | STRETCH RESISTANT THERAPEUTIC DEVICE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. | 08-02-2012 |
20120197288 | STRETCH RESISTANT THERAPEUTIC DEVICE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. | 08-02-2012 |
20120197289 | STRETCH RESISTANT THERAPEUTIC DEVICE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. | 08-02-2012 |
Patent application number | Description | Published |
20080221658 | Vascular prosthesis and methods of use - An implantable vascular prosthesis is provided for use in a wide range of applications wherein at least first and second helical sections having alternating directions of rotation are coupled to one another. The prosthesis is configured to conform to a vessel wall without substantially remodeling the vessel, and permits accurate deployment in a vessel without shifting or foreshortening. | 09-11-2008 |
20080221663 | Vascular prosthesis and methods of use - An implantable vascular prosthesis is provided for use in a wide range of applications wherein at least first and second helical sections having alternating directions of rotation are coupled to one another. The prosthesis is configured to conform to a vessel wall without substantially remodeling the vessel, and permits accurate deployment in a vessel without shifting or foreshortening. | 09-11-2008 |
20080221665 | Vascular prosthesis and methods of use - An implantable vascular prosthesis is provided for use in a wide range of applications wherein at least first and second helical sections having alternating directions of rotation are coupled to one another. The prosthesis is configured to conform to a vessel wall without substantially remodeling the vessel, and permits accurate deployment in a vessel without shifting or foreshortening. | 09-11-2008 |
20110054590 | VASCULAR PROSTHESIS WITH STRESS RELIEF SLOTS - A vascular prosthesis comprises generally tubular body placeable in contracted and expanded states and has an axial length and a circumferential dimension in the expanded state. The body includes a series of circumferential elements having first lengths. First and second connectors have connector lengths and join alternating ends of adjacent circumferential elements. The first length plus the connector lengths joined thereto equal a total circumferential length. Each connector length is between 2.5% and 25% of the total circumferential length. Adjacent circumferential elements and connectors extending therefrom are separated by a stress relief slot having a relief slot length of more than 50% and less than 95% of the total circumferential length. The stress relief slots have narrow width portions over a majority of the relief slot lengths, the narrow width portions having lateral dimensions of no greater than about 3 mm. | 03-03-2011 |
20110218608 | Vascular Prosthesis Delivery System and Method - A vascular prosthesis delivery system comprises a radially self expandable vascular prosthesis and a delivery sheath with a lumen with a smaller diameter storage region and a larger diameter delivery region. A prosthesis is housed within the storage region and is movable into the delivery region for delivery at a target site within a patient. The delivery force required to move the prosthesis from the delivery region into the patient can be less than the force required to move the prosthesis from the storage region into the delivery region. In some examples, the storage region defines a tapered lumen expanding in diameter in a distal direction. In some examples, the storage and delivery regions are generally coextensive and define a tapered lumen expanding in diameter in a distal direction. A method stores a vascular prosthesis in the storage region and delivers it to a target site from the delivery region. | 09-08-2011 |
20110218613 | Vascular Prosthesis Assembly with Retention Mechanism and Method - A vascular prosthesis assembly includes a self expanding prosthesis and a selectively releasable retention mechanism over the outer surface of the prosthesis which maintains the vascular prosthesis in a contracted state. The retention mechanism may include a removable strand extending along the length of the prosthesis having a series of slip knots. The retention mechanism may also include a removable strand which engages overlying layers of a wrapped prosthesis by the passage of the strand through openings in the overlying layers. Manipulation of a user-accessible release strand permits release of the retention mechanism. The retention mechanism may also include a generally cylindrical sheath housing the vascular prosthesis, the sheath constructed to be split and removed to release the prosthesis. A method releases the prosthesis to expand at a target site using a retention mechanism. | 09-08-2011 |
20120179194 | VASOOCCLUSIVE COIL WITH ENHANCED THERAPEUTIC STRAND STRUCTURE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. The stretch resistant member may be formed from a therapeutic and/or bioactive non-metallic material to enhance the therapeutic properties of the vasoocclusive coil. | 07-12-2012 |
20130103130 | Catheter Assembly With User-Assisting Handle - A catheter assembly includes a catheter, including an inner member and a sheath, extending from a handle. The handle includes a housing, a braking assembly, a carriage and a carriage driver. The braking assembly comprises a braking element within the housing interior and a braking element rotator. The carriage comprises at least one carriage braking surface engaging the braking element. The carriage driver, such as a spring, biases the carriage towards the proximal end of the handle. The inner member has a proximal end secured to the housing. The sheath has a proximal end secured to the carriage. Rotating the braking element causes the carriage to move proximally as the carriage braking surface slides along the braking element. This causes the sheath to move proximally relative to the inner member. | 04-25-2013 |
20130123899 | Vascular Prosthesis and Methods of Use - An implantable vascular prosthesis is provided for use in a wide range of applications wherein at least first and second helical sections having alternating directions of rotation are coupled to one another. The alternating helical section includes a first and second helical portions each having a flange and having adjacent ends joined directly to one another to define an apex. Each helical portion has a widened flange portion adjacent to the apex, the widened flange portions extending into a space between the helical portions. The prosthesis is configured to conform to a vessel wall without substantially remodeling the vessel, and permits accurate deployment in a vessel without shifting or foreshortening. | 05-16-2013 |
20130338701 | VASOOCCLUSIVE COIL WITH ENHANCED THERAPEUTIC STRAND STRUCTURE - A vasoocclusive coil is reinforced with a stretch resistant member to improve safety during retraction of the coil. The stretch resistant member is fixedly attached at one end to the vasoocclusive coil, and the other end of the stretch resistant member is detachably mounted to an elongated pusher member to allow for placement and release of the vasoocclusive coil within the patient's vasculature. The stretch resistant member may be formed from a therapeutic and/or bioactive non-metallic material to enhance the therapeutic properties of the vasoocclusive coil. | 12-19-2013 |
20130338702 | VASOOCCLUSIVE COIL WITH BIPLEX WINDINGS TO IMPROVE MECHANICAL PROPERTIES - The vasoocclusive device for use in interventional therapy and vascular surgery adapted to be inserted into a portion of a vasculature, includes a vasoocclusive coil disposed about an inner reinforcement coil wherein said vasoocclusive coil is helically wound and the inner reinforcement coil forms a reverse helical winding opposite the vasoocclusive coil winding, thereby forming a biplex wound coil. The vasoocclusive device biplex winding provides improved mechanical properties to the device. An inner reinforcement stretch resistant member attached within the biplex windings limits coil stretchability. | 12-19-2013 |
20140088679 | INTRAVASCULAR FLOW MODIFIER AND REINFORCEMENT DEVICE AND DEPLOYMENT SYSTEM FOR SAME - A stent includes a cylindrical frame consisting of a series of helical winds containing a pattern of alternating zigzag bends. The frame may be made of resilient wire or from a piece of laser cut hypo tubing by placing the stent over a notched portion of a pusher catheter member, and retained on the pusher catheter member by a release wire threaded through the pusher catheter member and over the stent. The stent may also be deployed by placing the stent over a pusher catheter member having opposing notched portions, and retaining the stent and pusher catheter member in a delivery catheter, which can be withdrawn when stent reaches the site to be treated to release the stent. | 03-27-2014 |