Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Lei Wang, Clovis US

Lei Wang, Clovis, CA US

Patent application numberDescriptionPublished
20120162416STOPPED OBJECT DETECTION - A video surveillance system includes: an input configured to receive indications of images each comprising a plurality of pixels; a memory; and a processing unit communicatively coupled to the input and the memory and configured to: analyze the indications of the images; compare the present image with a short-term background image stored in the memory; compare the present image with a long-term background image stored in the memory; provide an indication in response to an object in the present image being disposed in a first location in the present image, in a second location in, or absent from, the short-term background image, and in a third location in, or absent from, the long-term background image, where the first location is different from both the second location and the third location.06-28-2012
20120169882Tracking Moving Objects Using a Camera Network - Techniques are described for tracking moving objects using a plurality of security cameras. Multiple cameras may capture frames that contain images of a moving object. These images may be processed by the cameras to create metadata associated with the images of the objects. Frames of each camera's video feed and metadata may be transmitted to a host computer system. The host computer system may use the metadata received from each camera to determine whether the moving objects imaged by the cameras represent the same moving object. Based upon properties of the images of the objects described in the metadata received from each camera, the host computer system may select a preferable video feed containing images of the moving object for display to a user.07-05-2012
20120169923VIDEO CODING - Techniques are discussed for providing mechanisms for coding and transmitting high definition video, e.g., over low bandwidth connections. In particular, foreground-objects are identified as distinct from the background of a scene represented in a plurality of video frames received from a video source, such as a camera. In identifying foreground-objects, semantically significant and semantically insignificant movement (e.g., repetitive versus non-repetitive movement) is differentiated. Processing of the foreground-objects and background proceed at different update rates or frequencies.07-05-2012
20120170803SEARCHING RECORDED VIDEO - Embodiments of the disclosure provide for systems and methods for creating metadata associated with a video data. The metadata can include data about objects viewed within a video scene and/or events that occur within the video scene. Some embodiments allow users to search for specific objects and/or events by searching the recorded metadata. In some embodiments, metadata is created by receiving a video frame and developing a background model for the video frame. Foreground object(s) can then be identified in the video frame using the background model. Once these objects are identified they can be classified and/or an event associated with the foreground object may be detected. The event and the classification of the foreground object can then be recorded as metadata.07-05-2012
20120170838Color Similarity Sorting for Video Forensics Search - Systems and methods of sorting electronic color images of objects are provided. One method includes receiving an input representation of an object, the representation including pixels defined in a first color space, converting the input image into a second color space, determining a query feature vector including multiple parameters associated with color of the input representation, the query feature vector parameters including at least a first parameter of the first color space and at least a first parameter of the second color space and comparing the query feature vector to multiple candidate feature vectors. Each candidate feature vector includes multiple parameters associated with color of multiple stored candidate images, the candidate feature vector parameters including at least the first parameter from the first color space and at least the first parameter from the second color space. The method further includes determining at least one of the candidate images to be a possible match to the desired object based on the comparison.07-05-2012
20120170902Inference Engine for Video Analytics Metadata-Based Event Detection and Forensic Search - Embodiments of the disclosure provide for systems and methods for searching video data for events and/or behaviors. An inference engine can be used to aide in the searching. In some embodiments, a user can specify various search criteria, for example, a video source(s), an event(s) or behavior(s) to search, and an action(s) to perform in the event of a successful search. The search can be performed by analyzing an object(s) found within scenes of the video data. An object can be identified by a number of attributes specified by the user. Once the search criteria has been received from the user, the video data can be received (or extracted from storage), the data analyzed for the specified events (or behaviors), and the specified action performed in the event a successful search occurs.07-05-2012
20120173577SEARCHING RECORDED VIDEO - Embodiments of the disclosure provide for systems and methods for creating metadata associated with a video data. The metadata can include data about objects viewed within a video scene and/or events that occur within the video scene. Some embodiments allow users to search for specific objects and/or events by searching the recorded metadata. In some embodiments, metadata is created by receiving a video frame and developing a background model for the video frame. Foreground object(s) can then be identified in the video frame using the background model. Once these objects are identified they can be classified and/or an event associated with the foreground object may be detected. The event and the classification of the foreground object can then be recorded as metadata.07-05-2012
20130028467SEARCHING RECORDED VIDEO - Embodiments of the disclosure provide for systems and methods for creating metadata associated with a video data. The metadata can include data about objects viewed within a video scene and/or events that occur within the video scene. Some embodiments allow users to search for specific objects and/or events by searching the recorded metadata. In some embodiments, metadata is created by receiving a video frame and developing a background model for the video frame. Foreground object(s) can then be identified in the video frame using the background model. Once these objects are identified they can be classified and/or an event associated with the foreground object may be detected. The event and the classification of the foreground object can then be recorded as metadata.01-31-2013
20130128050GEOGRAPHIC MAP BASED CONTROL - Disclosed are methods, systems, computer readable media and other implementations, including a method that includes determining, from image data captured by a plurality of cameras, motion data for multiple moving objects, and presenting, on a global image representative of areas monitored by the plurality of cameras, graphical indications of the determined motion data for the multiple objects at positions on the global image corresponding to geographic locations of the multiple moving objects. The method further includes presenting captured image data from one of the plurality of cameras in response to selection, based on the graphical indications presented on the global image, of an area of the global image presenting at least one of the graphical indications for at least one of the multiple moving objects captured by the one of the plurality of cameras.05-23-2013
20130155247Method and System for Color Adjustment - A method of adjusting the color of images captured by a plurality of cameras comprises the steps of receiving a first image captured by a first camera from the plurality of cameras, analyzing the first image to separate the pixels in the first image into background pixels and foreground pixels, selecting pixels from the background pixels that have a color that is a shade of gray, determining the amount to adjust the colors of the selected pixels to move their colors towards true gray, and providing information for use in adjusting the color components of images from the plurality of cameras.06-20-2013
20130162834INTEGRATED VIDEO QUANTIZATION - Techniques for processing video content in a video camera are provided. The techniques include a method for processing video content in at video camera according to the disclosure includes capturing thermal video data using a thermal imaging sensor, determining quantization parameters for the thermal video data, quantizing the thermal video data to generate quantized thermal video data content and video quantization information, and transmitting the quantized thermal video data stream and the video quantization information to a video analytics server over a network.06-27-2013
20130166711Cloud-Based Video Surveillance Management System - Systems and methods are described herein that provide a three-tier intelligent video surveillance management system. An example of a system described herein includes a gateway configured to obtain video content and metadata relating to the video content from a plurality of network devices, a metadata processing module communicatively coupled to the gateway and configured to filter the metadata according to one or more criteria to obtain a filtered set of metadata, a video processing module communicatively coupled to the gateway and the metadata processing module and configured to isolate video portions, of video the content, associated with respective first portions of the filtered set of metadata, and a cloud services interface communicatively coupled to the gateway, the metadata processing module and the video processing module and configured to provide at least some of the filtered set of metadata or the isolated video portions to a cloud computing service.06-27-2013
20130170557Method and System for Video Coding with Noise Filtering - Techniques are discussed herein for providing mechanisms for coding and transmitting high definition video, e.g., over low bandwidth connections. In particular, foreground-objects are identified as distinct from the background of a scene represented by a plurality of video frames. In identifying foreground-objects, semantically significant and semantically insignificant movement (e.g., non-repetitive versus repetitive movement) is differentiated. For example, the swaying motion of a tree's leaves being minor and repetitive, can be determined to be semantically insignificant and to belong in a scene's background. Processing of the foreground-objects and background proceed at different update rates or frequencies. For example, foreground-objects can be updated 30 or 60 times per second. By contrast, a background is updated less frequently, e.g., once every 10 seconds. In some implementations, if no foreground-objects are identified, no live video is transmitted (e.g., if no motion is detected, static images are not configured to be repeatedly sent). Techniques described herein take advantage of the realization that, in the area of surveillance and wireless communications, updating video of semantically significant movement at a high frame rate is sufficient.07-04-2013
20130170760Method and System for Video Composition - A method of presenting video comprising receiving a plurality of video data from a video source, analyzing the plurality of video data; identifying the presence of foreground-objects that are distinct from background portions in the plurality of video data, classifying the foreground-objects into foreground-object classifications, receiving user input selecting a foreground-object classification, and generating video frames from the plurality of video data containing background portions and only foreground-objects in the selected foreground-object classification.07-04-2013
20130176430CONTEXT AWARE MOVING OBJECT DETECTION - An image capture system includes: an image capture unit configured to capture a first image frame comprising a set of pixels; and a processor coupled to the image capture unit and configured to: determine a normalized distance of a pixel characteristic between the first image frame and a second image frame for each pixel in the first image frame; compare the normalized distance for each pixel in the first image frame against a pixel sensitivity value for that pixel; determine that a particular pixel of the first image frame is a foreground or background pixel based on the normalized distance of the particular pixel relative to the pixel sensitivity value for the particular pixel; and adapt the pixel sensitivity value for each pixel over a range of allowable pixel sensitivity values.07-11-2013
20140139633Method and System for Counting People Using Depth Sensor - A sensor system according to an embodiment of the invention may process depth data and visible light data for a more accurate detection. Depth data assists where visible light images are susceptible to false positives. Visible light images (or video) may similarly enhance conclusions drawn from depth data alone. Detections may be object-based or defined with the context of a target object. Depending on the target object, the types of detections may vary to include motion and behavior. Applications of the described sensor system include motion guided interfaces where users may interact with one or more systems through gestures. The sensor system described may also be applied to counting systems, surveillance systems, polling systems, retail store analytics, or the like.05-22-2014
20140139660Method and Apparatus for Detecting People by a Surveillance System - Surveillance systems may be found in both private and public spaces. In private spaces, they can be designed to help provide and monitor secure premises. Similarly, public spaces may also use surveillance systems to determine an allocation of public resources. A camera surveillance system according to an embodiment of the invention uses advanced image processing techniques to determine whether an object moving across a scene is a person. The camera surveillance system achieves an accurate and efficient classification by selectively processing a set of features associated with the object, such as features that define an omega shape. By selectively processing the set of features associated with the object, the methods and systems described herein reduce the computational complexity of standard image processing/object detection techniques.05-22-2014
20140139680Method And System For Metadata Extraction From Master-Slave Cameras Tracking System - An embodiment of the present invention includes a master camera that may record master metadata regarding an object of interest and communicate the master metadata to a slave camera. The slave camera may zoom, pan, or tilt to isolate and record more detailed image data regarding the object of interest based on the master metadata. In addition, the slave camera may record slave metadata regarding the object of interest. The master and slave metadata may be stored associated with the recorded image data enabling a later search for the object of interest to be expedited. The recorded image data including the object of interest may be identified with greater ease as it may be guided by the master or slave metadata, or a combination thereof. According to embodiments presented herein, processing time for searching and identifying an object of interest may be reduced by enabling a search on the metadata associated with image data, rather than by searching the image data itself.05-22-2014
20140277757METHOD AND APPARATUS FOR AN ENERGY SAVING HEATING, VENTILATION, AND AIR CONDITIONING (HVAC) CONTROL SYSTEM - Embodiments of methods and apparatus disclosed herein may employ depth, visual, or motions sensors to enable three-dimensional people counting and data mining to enable an energy saving heating, ventilation, and air conditioning (HVAC) control system. Head detection methods based on depth information may assist people counting in order to enable an accurate determination of room occupancy. A pattern of activities of room occupancy may be learned to predict the activity level of a building or its rooms, reducing energy usage and thereby providing a cost savings.09-18-2014

Patent applications by Lei Wang, Clovis, CA US

Website © 2015 Advameg, Inc.