Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Kenzo Takahashi, Matsudo-Shi JP

Kenzo Takahashi, Matsudo-Shi JP

Patent application numberDescriptionPublished
20090322000MELTING FURNACE WITH AGITATOR - There is provided a melting furnace with an agitator. The melting furnace with an agitator includes a melting furnace that contains melt, and an agitator that agitates the melt by an electromagnetic force. The agitator includes a first electrode that is provided at an arbitrary position of the melting furnace so as to come in contact with the melt contained in the melting furnace, a second electrode that is provided near a bottom wall of the melting furnace so as to come in contact with the melt, a first magnetic field device that is provided outside the melting furnace so as to face the bottom wall of the melting furnace and makes a north pole face the bottom wall, and a second magnetic field device that is provided outside the melting furnace so as to face the bottom wall of the melting furnace and makes a south pole face the bottom wall. The first and second magnetic field devices are disposed with a gap in a certain direction.12-31-2009
20100244338NON-FERROUS METAL MELT PUMP AND NON-FERROUS METAL MELTING FURNACE USING THE SAME - A non-ferrous metal melting furnace includes a non-ferrous metal melt pump, a vortex chamber body, and a magnetic field device formed of permanent magnets. The vortex chamber body makes a non-ferrous metal melt flow into a vortex chamber from an inlet, makes the non-ferrous metal melt flow in a spiral shape by applying a driving force to the non-ferrous metal melt in the vortex chamber, and discharges the non-ferrous metal melt from the vortex chamber to an outlet. The magnetic field device formed of permanent magnets is disposed outside the vortex chamber and below a bottom plate of the vortex chamber, and applies the driving force to the non-ferrous metal melt by an electromagnetic force that is generated by current flowing in the non-ferrous metal melt and magnetic lines of force from the magnetic field device formed of permanent magnets.09-30-2010
20110248432NON-FERROUS METAL MELT PUMP AND MELTING FURNACE SYSTEM USING THE SAME - Provided are a non-ferrous metal melt pump having a simple structure capable of tapping non-ferrous metal melt at a low cost without the help of a person, and a melting furnace system using the same. The non-ferrous metal melt pump includes: a container body which includes an inner space and a non-ferrous metal melt passageway, the non-ferrous metal melt passageway having a spiral passageway formed inside a side wall so that a lower end inlet and an upper end open portion, respectively formed in the side wall to be open to the outside, communicate with each other; a magnetic field device, which is rotatable about the vertical axis line, arranged inside the inner space, and the magnetic field device having a magnitude of a magnetic field such that lines of magnetic force moves while penetrating non-ferrous metal melt inside the spiral passageway during the rotation; and a drive device which rotationally drives the magnetic field device.10-13-2011
20120104669Non-ferrous Metal Melt Pump and Non-ferrous Metal Melting Furnace Using the Same - A non-ferrous metal melting furnace includes a non-ferrous metal melt pump, a vortex chamber body, and a magnetic field device formed of permanent magnets. The vortex chamber body makes a non-ferrous metal melt flow into a vortex chamber from an inlet, makes the non-ferrous metal melt flow in a spiral shape by applying a driving force to the non-ferrous metal melt in the vortex chamber, and discharges the non-ferrous metal melt from the vortex chamber to an outlet. The magnetic field device formed of permanent magnets is disposed outside the vortex chamber and below a bottom plate of the vortex chamber, and applies the driving force that is generated by current flowing in the non-ferrous metal melt and magnetic lines of force from the magnetic field device formed of permanent magnets.05-03-2012
20130192791MOLDING DEVICE FOR CONTINUOUS CASTING EQUIPPED WITH AGITATOR - There is provided a molding device for continuous casting equipped with an agitator which receives liquid-phase melt of a conductive material and from which a solid-phase cast product is taken out through the cooling of the melt. The molding device includes a casting mold and an agitator. The casting mold receives the liquid-phase melt from an inlet side and discharges the solid-phase cast product from an outlet side by cooling. The agitator is provided outside the casting mold, and includes an electrode unit and a magnetic field generation device. The electrode unit includes first electrodes positioned at the top and a second electrode positioned therebelow, and the magnetic field generation device includes a permanent magnet for applying a magnetic field to the liquid-phase melt. The first electrodes are provided so as to conduct electricity to the liquid-phase melt, and the second electrode is provided so as to conduct electricity to the solid-phase cast product. The first and second electrodes are adapted so as to conduct electricity in the vertical direction through the melt and the cast product provided therebetween. The magnetic field generation device is provided outside the casting mold and generates magnetic lines of force in a lateral direction so that the magnetic lines of force penetrate into the casting mold, reach the inside of the casting mold, and are applied to the melt in the lateral direction crossing the current.08-01-2013
20140069602MOLDING DEVICE FOR CONTINUOUS CASTING EQUIPPED WITH AGITATOR - There is provided a molding device for continuous casting equipped with an agitator that reduces the amount of generated heat, is easy to carry out maintenance, is inexpensive, and is easy to use in practice. The molding device for continuous casting equipped with an agitator of the invention receives liquid-phase melt of a conductive material, and a solid-phase cast product is taken out from the molding device through the cooling of the melt. The molding device includes a casting mold and an agitator provided so as to correspond to the casting mold. The casting mold includes a casting space that includes an inlet and an outlet at a central portion of a substantially cylindrical side wall, and a magnetic field generation device receiving chamber that is formed in the side wall and is positioned outside the casting space. The casting mold receives the liquid-phase melt from the inlet into the casting space and discharges the solid-phase cast product from the outlet through the cooling in the casting space. The agitator includes a magnetic field generation device having an electrode unit that includes first and second electrodes supplying current to at least the liquid-phase melt present in the casting space, and a permanent magnet that applies a magnetic field to the liquid-phase melt. The magnetic field generation device is received in the magnetic field generation device receiving chamber of the casting mold, generates magnetic lines of force toward a center in a lateral direction, makes the magnetic lines of force pass through a part of the side wall of the casting mold and reach the casting space, and applies lateral magnetic lines of force, which cross the current, to the melt.03-13-2014
20140079561PERMANENT MAGNET TYPE CYLINDRICAL MOLTEN-METAL AGITATOR AND MELTING FURNACE WITH PERMANENT MAGNET TYPE SUCTION PUMP - There is provided an energy-saving agitator that suppresses the amount of generated heat, is easy to use and carry out maintenance, has flexibility in an installation position, and can also adjust an agitating ability. The agitator includes a furnace body that includes a molten metal room storing a molten metal, and an agitating unit that agitates the molten metal stored in the furnace body. The agitating unit includes a molten-metal driving room-forming part that is disposed in the molten metal room, applies a driving force to the molten metal, and forms a driving room of which both ends are opened; a pair of electrodes that is disposed in the driving room and makes current flow in the driving room under the presence of the molten metal; and a magnetic field unit which is formed of a permanent magnet disposed outside the furnace body, of which one pole of an N pole and an S pole faces the furnace body so that magnetic lines of force generated from the one pole cross the current, and which generates an electromagnetic force for driving the molten metal from one end toward the other end in the driving room.03-20-2014
20140210145METAL MELTING FURNACE VORTEX CHAMBER BODY AND METAL MELTING FURNACE USING THE SAME - A metal melting furnace includes: a furnace body which includes a storage space storing molten metal; a vortex chamber body which includes a vortex chamber capable of communicating with the storage space of the furnace body; and a drop weir part which changes a communication state and an interruption state between the storage space and the vortex chamber, wherein the drop weir part includes a blind drop weir and an opening type drop weir which are formed as separate members, wherein at least the blind drop weir is movable up and down with respect to the vortex chamber body and is selectively positioned at an upward movement position and a downward movement position so as to switch the communication state and the interruption state, and wherein the opening type drop weir includes notches which communicate the vortex chamber and the storage space with each other in the communication state.07-31-2014
20140284854METAL MELTING FURNACE VORTEX CHAMBER BODY AND METAL MELTING FURNACE USING THE SAME - A metal melting furnace includes: a furnace body including a storage space storing molten metal; a vortex chamber body including a vortex chamber communicating with the storage space, the vortex chamber body including a partition plate serving as a drop weir uprightly formed inside the vortex chamber, the partition plate disposed at a communication side with respect to the storage space in the vortex chamber so that the longitudinal direction of the partition plate follows the communication direction and divides the communication side to form first and second vortex chamber openings positioned at both sides of the partition plate and communicating with both the storage space and the vortex chamber; and a molten metal whirling gap formed between a front end portion of the partition plate positioned inside of the vortex chamber in the longitudinal direction and an inner wall of the vortex chamber body facing the front end portion.09-25-2014

Patent applications by Kenzo Takahashi, Matsudo-Shi JP

Website © 2015 Advameg, Inc.