Patent application number | Description | Published |
20100034646 | CENTRIFUGAL COMPRESSOR - The present invention provides a centrifugal compressor that inhibits possible leakage while reducing a destabilizing fluid force generated in a seal to prevent the possible instable vibration of a rotor. The centrifugal compressor includes a casing, a rotor rotatably installed in the casing and having an impeller, and seals provided in the clearance between the casing and the rotor to prevent a fluid from leaking through the clearance from a high pressure side to a low pressure side. The rotor rotates to compress gas. For example, the balance piston seal is composed of a damper seal with a plurality of holes and a labyrinth seal with an annular parallel groove; the damper seal and the labyrinth seal are continuously provided. The damper seal is disposed on the high pressure side in a leakage flow direction. The labyrinth seal is disposed on the low pressure side in the leakage flow direction. | 02-11-2010 |
20100166544 | TURBOMACHINERY - Disclosed herein is a turbomachinery including a labyrinth seal easy to fabricate and adapted to prevent unstable vibration of a rotor. A turbomachinery according to this invention includes a labyrinth seal | 07-01-2010 |
20110318163 | BARREL-SHAPED CENTRIFUGAL COMPRESSOR - In a centrifugal compressor, for the purpose of preventing the positions of a diaphragm and a head flange in a radial direction from moving with respect to a casing, suppressing the generation of an unstable fluid force in a seal and the contact of the seal with a rotor to prevent the unstable vibration of the rotor and enabling an efficient and stable operation even on high-pressure conditions, there is provided a barrel-shaped centrifugal compressor including a casing, a diaphragm located in the casing to define a flow channel, and a head flange attached to the end of the casing by a shear key, wherein in the inner peripheral surface of the casing and the outer peripheral surface of abutment portions of the diaphragm and the head flange in which they are abutted on the inner peripheral surface of the casing, sliding key grooves which are vertical to the surfaces are provided at least two portions in a peripheral direction, and sliding keys are provided in the key grooves. | 12-29-2011 |
20120121411 | Labyrinth Seals for Turbomachinery - A labyrinth seal is provided that can suppress the occurrence of an unequal pressure pattern in the seal, suppress unstable vibration of a rotating shaft and ensure sealing performance. | 05-17-2012 |
Patent application number | Description | Published |
20080258570 | Stator - The present invention provides a stator coiled in a spiral, capable of mechanically inserting a wound coil in the slot of a stator core. In a stator in which coils are overlapped in a spiral when viewed from the end surface of the stator core after each of one sides of a plurality of coils wound in advance is inserted in the slot of the stator core and each of the other sides of the plurality of coils is inserted in a different slot, by repeating the inserting operation twice or more, the loop of the coils overlapped in a spiral are piled in two layers or more in the radius direction of the stator core and the total coil sectional area inserted in the slots of the stator core is larger than a prescribed value based on the inside radius of the stator core. | 10-23-2008 |
20130000105 | METHOD FOR PRODUCING STATOR FOR ROTARY ELECTRIC MACHINE, AND PRODUCTION DEVICE - Disclosed is a method for producing a stator for a rotary electric machine, which involves preparing a stator core having a plurality of slots. Each of a plurality of coils is provided with a pair of coil ends, a first side, and a second side. The first side and/or the second side is inserted into the retaining groove of a jig, and each coil is set on the jig in a manner such that both coil ends extend further to the outside than the end surfaces of the jig in the axial direction thereof. The jig is disposed inside the stator core in the diameter direction. The space between the first side and the second side of the coil is expanded by applying pressing force to both coil ends from the axial direction of the stator core by means of a pressing member. | 01-03-2013 |
20130009509 | STATOR FOR ROTATING ELECTRICAL MACHINE, METHOD FOR MANUFACTURING STATOR, AND METHOD FOR MANUFACTURING COIL FOR STATOR - Disclosed is a stator for a rotating electrical machine, which includes a stator core having a plurality of slots, and a plurality of coils. Each of the coils has a first inserting section and a second inserting section, which are inserted into two slots which form a pair, a first coil end, and a second coil end. The first and/or the second coil end has a twisted portion and a bent portion. The twisted portion is formed by twisting the coil end at a part close to the first inserting section. The bent portion is formed by bending, at a part close to the second inserting section, the coil end such that the coil end is laid flat. | 01-10-2013 |
20130056110 | EDGEWISE WOUND COIL MANUFACTURING DEVICE - Disclosed is an edgewise wound coil manufacturing device for manufacturing an edgewise wound coil. The edgewise wound coil manufacturing device is provided with: a plurality of corners; a core having a recess formed between each pair of adjacent corners, and around which a flat wire is wrapped; a rotating part that forces the core to rotate around the central axis of the core; guide parts that hold the flat wire therebetween in the thickness direction, while guiding the flat wire in such a manner that the flat wire wraps around the core; a first moving part that forces at least one of the guide parts and the core to move in the approaching/receding direction of the other; and a controller that adjusts the amount that the first moving part moves such that the edgewise wound coil achieves the desired shape. | 03-07-2013 |
20130145614 | ASSEMBLING APPARATUS - An assembling apparatus ( | 06-13-2013 |
20140130912 | INJECTION APPARATUS - The injection apparatus, which injects a molding material into a mold by operating an injection cylinder and fills the mold with the molding material, includes a plurality of actuating mechanisms that is connected to the injection cylinder. Each actuating mechanism includes an actuating cylinder that supplies an incompressible fluid to the injection cylinder, and a drive part that drives a piston of the actuating cylinder. In a low-speed step and a high-speed step for injecting the molding material, the piston of each actuating cylinder is driven forward, and hydraulic oil is supplied to the injection cylinder. In a pressure-increasing step, the pistons of the actuating cylinders are driven forward, and hydraulic oil is supplied to the injection cylinder. As the injection apparatus includes a plurality of actuating mechanisms, the speed and pressure of the injection cylinder can be increased without requiring high performance from the drive parts. | 05-15-2014 |
20140131391 | INJECTION APPARATUS - An injection apparatus includes an actuating cylinder, an accommodating chamber, and a volume changing part capable of changing the volume of the accommodating chamber. The actuating cylinder has an operation chamber and a piston accommodated in the operation chamber, and supplies an incompressible fluid to the injection cylinder by forcing out the incompressible fluid inside the operation chamber with the piston. The accommodating chamber is connected to the operation chamber, and holds at least some of the incompressible fluid that flows out from the operation chamber due to the piston being pushed out. The volume changing part expands the volume of the accommodating chamber, at the latest simultaneously with the start of acceleration of the actuating cylinder, and stops the expansion of the volume when the operating speed of the piston of the actuating cylinder has reached a desired speed. | 05-15-2014 |
20140201979 | MANUFACTURING DEVICE AND MANUFACTURING METHOD FOR STATOR OF ROTATING ELECTRICAL MACHINE - A manufacturing device for a stator of a rotating electrical machine includes a jig, a support section, link mechanisms and press sections. The jig has holding grooves into which linear portions of coils can be respectively inserted. The jig can be arranged on the inner side of a stator core while holding grooves respectively face the openings of slots. Each of the link mechanisms has a push-out member and a link. The link moves a corresponding push-out member in a direction from the bottom portion of the holding groove to a corresponding slot and in a direction from the slot to the bottom portion. The push-out members can concurrently apply a pressing force to all the coil ends of the coils from the axial direction of the stator core in synchronization with the link mechanisms. | 07-24-2014 |
20140202652 | MOLD CLAMPING DEVICE - The mold clamping device is provided with a first platen to which a stationary mold is attached. A movable mold unit is capable of approaching and moving away from the stationary mold. A second platen is linked to the first platen via a tie bar. When the movable mold unit and the stationary mold are closed, a wedge member is driven onto the movable mold unit to generate mold clamping force. The second platen has a pressure receiving surface. The pressure receiving surface receives, through the wedge member, mold opening force that is generated by filling, with a molding material, the stationary mold and the movable mold unit that are in the closed state. | 07-24-2014 |
20140234471 | INJECTION APPARATUS - The injection apparatus is provided with a high speed step cylinder, a pressure accumulation part and a coupling mechanism. The high speed step cylinder has a rod and an operating chamber. The coupling mechanism is capable of switching between a coupled state in which the movement of the rod is restricted, and a non-coupled state in which the coupled state is released so as to enable the rod to move due to the operating pressure. The coupling mechanism includes a first coupling member, a second coupling member and a drive source. The coupling mechanism is kept in the coupled state in which the second coupling member is rotated to less than 90°. When the second coupling member is forced to rotate in the coupled state, the first coupling member rotates such that a first contact surface is in contact with a second contact surface. | 08-21-2014 |
20140255536 | INJECTION APPARATUS - An injection apparatus includes a pressure accumulating portion, which is connected to an injection cylinder, and a speed reduction mechanism, which reduces the speed of the injection cylinder arranged in the injection apparatus. The speed reduction mechanism includes an actuating member, which moves integrally with a rod of an injection cylinder rod, and a restriction member, which is arranged in a flow passage for draining or supplying hydraulic oil from or to the injection cylinder, and variably narrows the flow passage in conjunction with movement of the actuating member. | 09-11-2014 |
20140295019 | INJECTION APPARATUS - This injection apparatus injects and fills the inside of a mold with a molding material, and increases the pressure. The injection apparatus is provided with a unit for a low speed step, a unit for a high speed step, a unit for a pressure increasing step, and an injection plunger. A rod of a first unit, which is any one of the three units, is mechanically coupled to the injection plunger. A rod of a second unit, which is one of the two units other than the first unit, is mechanically coupled to the first unit. A rod of a third unit, which is the unit other than the first and second units, is mechanically coupled to the second unit. | 10-02-2014 |
20140314892 | INJECTION APPARATUS - An injection apparatus includes a pressure accumulating portion connected to an operation chamber of an injection cylinder. A control unit controls the speed at which the injection cylinder moves and is connected to a rod of the injection cylinder. The control unit includes a rotary shaft that follows the movement of the rod and is capable of moving in the same direction as the rod, a conversion mechanism that converts the linear motion of the rod into the rotation of the rotary shaft, and a rotation member coupled to the rotary shaft. The control unit further includes a resistance generating member that generates a frictional resistance by coming into sliding contact with the rotation member, an actuating member that is moved by an electric drive source, and a movement mechanism that follows the movement of the actuating member and moves the resistance generating member relative to the rotation member. | 10-23-2014 |
20140369880 | COMPRESSOR - A compressor includes a drive shaft, a housing, an annular rotor, and cradles. The rotor has cradle windows. The rotor can rotate within the rotor chamber together with the drive shaft while being in sliding contact with the housing at the circumferential surface. The cradles are provided in the cradle windows to be pivotable about pivot axes. When pivoting, the cradles maintain the compression chambers in an airtight state by being in contact with the housing at pivoting ends of the cradles, the pivoting ends extending along the direction parallel to the axis. The rotor chamber includes an outer operation chamber located on the outside of the rotor, and an inner operation chamber located on the inside of the rotor. The cradles, and the outer operation chamber and/or the inner operation chamber form the compression chambers, the volumes of which are varied by the rotation of the rotor. | 12-18-2014 |