Patent application number | Description | Published |
20080197785 | Display apparatus and electronic apparatus - A display apparatus includes a pixel unit in which pixels are arranged in a matrix pattern; and a driving circuit for driving the pixel unit. Each of the pixels includes a signal level holding capacitor; a first transistor that is turned on/off in response to a writing signal and via which one end of the signal level holding capacitor is connected to a signal line; a second transistor having one end of the signal level holding capacitor connected to a gate thereof and the other end of the signal level holding capacitor connected to a source thereof; a current-driven self-light-emitting element whose cathode is held at a cathode potential and whose anode is connected to the source of the second transistor; a third transistor that is turned on/off in response to a driving pulse signal; and a fourth transistor that is turned on/off in response to a control signal. | 08-21-2008 |
20080198102 | Display apparatus, driving method thereof, and electronic system - A display apparatus includes: a pixel array section including a row of scanning lines, a column of signal lines, and pixels in a matrix, with each of the pixels disposed at an intersection of both of the lines; and a drive section. The drive section performs line progressive scanning on the pixels. The pixel includes a light emitting device, a sampling transistor, a driving transistor, a switching transistor, and a holding capacitor. The sampling transistor samples a video signal in the holding capacitor, the driving transistor changes the device to a luminous state, the switching transistor becomes ON in advance of the sampling of the video signal to change the light emitting device to a non-luminous state, and the sampling transistor takes in the OFF voltage from the signal line to the driving transistor, thereby preventing a penetration current from flowing from the power source toward the fixed potential. | 08-21-2008 |
20080198104 | Display apparatus, method of driving a display, and electronic device - In a display apparatus including a correction unit and a switching transistor, the correction unit operates in a non-light emission period such that a correction voltage for eliminating an effect of a variation in a characteristic of a driving transistor is stored in a storage capacitor. The switching transistor is disposed between one current terminal of the driving transistor and a light emitting element. The switching transistor turns off during the non-light emission period thereby to electrically disconnect the light emitting element from the one current terminal of the driving transistor thereby preventing a leakage current from flowing through the light emitting element during the period in which the correction unit operates, and thus preventing the correction voltage from having an error due to the leakage current. | 08-21-2008 |
20080198111 | Display apparatus and drive method therefor, and electronic equipment - A drive section sequentially supplies respective scanning lines with a control signal and supplies respective signal lines with a video signal to carry out a correction operation for holding a voltage equivalent to a threshold voltage of a drive transistor in a holding capacitance, and subsequently performs a write operation for writing the video signal in the holding capacitance, and before the correction operation, the drive section switches potentials at the bias line and adds a coupling voltage to one current terminal of the drive transistor via an auxiliary capacitance to carry out a preparation operation for an initialization to set a potential difference between a control terminal and the one current terminal of the drive transistor larger than the threshold voltage. | 08-21-2008 |
20080198182 | Display device and electronic apparatus - With a source voltage of a transistor driving a light emitting element set to a fixed voltage, variations in an emission luminance due to variations in the threshold voltage of the transistor are corrected. The fixed voltage is set in accordance with a signal level of a drive pulse signal on-off controlling a transistor supplying power to the first transistor. | 08-21-2008 |
20080224621 | Display device - A display device includes a pixel area where a plurality of pixels are arranged in a matrix and a driving circuit for driving the pixel area. Each of the pixels includes a signal-level holding capacitor having two ends, a first transistor that is turned on and off in accordance with a write signal, a second transistor having a gate connected to the one end of the signal-level holding capacitor and a source connected to the other end of the signal-level holding capacitor, a current-driven self-luminous light-emitting element having a cathode held at a cathode potential and an anode connected to the source of the second transistor, a third transistor that is turned on and off in accordance with a driving-pulse signal, and a fourth transistor that is turned on and off in accordance with a control signal. | 09-18-2008 |
20080225025 | Display device and electronic apparatus - A transistor connected to a power source for driving a light-emitting element driving transistor and a transistor setting to a predetermined voltage a source voltage of the light-emitting element driving transistor are commonly controlled by a control signal that takes one of three levels. | 09-18-2008 |
20080231560 | Display device - A display device includes: a pixel array unit with pixel circuits disposed in matrix form, the pixel circuit including a driving transistor, an electro-optic element, a storage capacitor, and a sampling transistor, with the electro-optic element emitting light by generating a driving current based on information stored in the storage capacitor at the driving transistor to be applied to the electro-optic element; and a control unit, of which the output stage includes a buffer transistor, to output a pulse signal for driving the pixel array unit from the buffer transistor; wherein the pixel array unit and the control unit are formed with long laser beam irradiation to be scanned in the vertical direction or horizontal direction; and wherein with the control unit, the size of the buffer transistor is equal to or greater than the pixel pitch in the scanning direction of the laser beam. | 09-25-2008 |
20080238909 | Display device, driving method therefor, and electronic apparatus - A display device includes a pixel array and a drive unit that drives the pixel array. The pixel array includes first and second scanning lines in rows, signal lines in columns, a matrix of pixels arranged at respective intersections of the scanning lines and the signal lines, power supply lines that supply power to each of the pixels, and ground lines. The drive unit includes a first scanner that sequentially supplies first control signals to the corresponding first scanning lines to perform line-sequential scanning on the pixels on a row-by-row basis, a second scanner that sequentially supplies second control signals to the corresponding second scanning lines in synchronization with the line-sequential scanning, and a signal selector that supplies video signals to the signal lines in synchronization with the line-sequential scanning. Each pixel includes a light-emitting element, a sampling transistor, a drive transistor, a switching transistor, and a pixel capacitor. | 10-02-2008 |
20080238955 | Display apparatus, driving method therefor and electronic apparatus - Disclosed herein is a display apparatus, including a pixel array section, and a driving section configured to drive said pixel array section. | 10-02-2008 |
20080278410 | Display and electronic apparatus - A display is disclosed, having an interconnect layout that allows easy repairing of a short-circuit defect even at the intersection of row and column interconnects. The display includes: row interconnects configured to be disposed along rows; column interconnects configured to be disposed along columns; and pixels configured to be disposed corresponding to intersections of the row and column interconnects arranged in a lattice manner. Each of the pixels includes at least a sampling transistor, a drive transistor, a holding capacitor, and a light-emitting element. The sampling transistor is turned on in response to a control signal supplied from one of the interconnects to thereby sample a video signal supplied from another of the interconnects and write the video signal to the holding capacitor. The drive transistor supplies the light-emitting element with a drive current dependent upon the video signal written to the holding capacitor. | 11-13-2008 |
20080278464 | Pixel circuit and display device - A pixel circuit includes an electro-optical element configured to emit light in response to a drive signal, a drive transistor configured to supply the drive signal to the electro-optical element, a pixel capacitor connected to a control input terminal of the drive transistor, a switching transistor provided at the control input terminal of the drive transistor, and a drive-signal stabilizing circuit configured to maintain the drive signal at a constant level. Each of the drive transistor and the switching transistor has a lightly doped drain structure, and a lightly doped drain region of the switching transistor has a longer length than a lightly doped drain region of the drive transistor. | 11-13-2008 |
20080284774 | Display, method for driving display, electronic apparatus - A display includes: a pixel array section configured to include power feed lines, scan lines disposed along rows, signal lines disposed along columns, and pixels that are disposed at intersections of the scan lines and the signal lines and are arranged in a matrix, each of the pixels including a drive transistor and a light-emitting device, one of a pair of current terminals as source and drain of the drive transistor being connected to the power feed line, and a power supply scanner configured to sequentially switch potential of each power feed line between higher potential and lower potential, wherein the power supply scanner switches the higher potential applied to the power feed line between first higher potential and second higher potential at different levels in a predetermined sequence. | 11-20-2008 |
20080291125 | Display device, display device driving method, and electronic apparatus - A display device includes a pixel array portion and a driving portion for driving the pixel array portion. The pixel array portion includes row scanning lines, column signal lines, and pixels arranged in a matrix form at intersections of the scanning lines and the signal lines. The driving portion includes a write scanner for supplying a control signal to each of the scanning lines by sequentially scanning the scanning lines in each field and a signal selector for supplying a video signal to each of the signal lines in synchronization with the sequential scanning. The pixels each includes a storage capacitor, a light-emitting element, a sampling transistor for being turned on in response to the control signal, sampling the video signal, and storing the video signal in the storage capacitor, and a drive transistor for supplying a driving current to the light-emitting element in accordance with the stored video signal. | 11-27-2008 |
20080291138 | Display device, driving method thereof, and electronic device - Disclosed herein is a display device including: a pixel array unit; and a driving unit; wherein the pixel array unit includes first scanning lines and second scanning lines in a form of rows, signal lines in a form of columns, and pixels in a form of a matrix, the pixels being disposed at parts where the first scanning lines and the signal lines intersect each other, each pixel includes a drive transistor of an N-channel type, a sampling transistor, a switching transistor, a retaining capacitance, and a light emitting element, the driving unit includes a write scanner for sequentially supplying a control signal to each first scanning line, a drive scanner for sequentially supplying a control signal to each second scanning line, and a signal selector for alternately supplying a signal potential as a video signal and a predetermined reference potential to each signal line. | 11-27-2008 |
20080291182 | Display device, driving method thereof, and electronic device - Disclosed herein is a display device including: a pixel array unit; and a driving unit; wherein said pixel array unit includes first scanning lines and second scanning lines in a form of rows, signal lines in a form of columns, and pixels in a form of a matrix, each pixel includes a drive transistor, a sampling transistor, a switching transistor, a retaining capacitance, and a light emitting element, said driving unit includes a write scanner for sequentially supplying a control signal to each first scanning line, a drive scanner for sequentially supplying a control signal to each second scanning line, and a signal selector for alternately supplying a signal potential as a video signal and a predetermined reference potential to each signal line. | 11-27-2008 |
20080297449 | Display device - A display device includes: a pixel array unit with pixel circuits disposed in matrix form, the pixel circuit including a driving transistor, an electro-optic element, a storage-capacitor, and a sampling transistor, with the electro-optic element emitting light by generating a driving current based on information stored in the storage-capacitor at the driving transistor to be applied to the electro-optic element; and a control unit, of which the output stage includes a buffer transistor, to output a pulse signal for driving the pixel array unit from the buffer transistor; wherein the pixel array unit and the control unit are formed with long laser beam irradiation to be scanned in the vertical direction; and with the control unit, buffer transistors for outputting a pulse signal for sampling to an input video signal to each signal line are arrayed in a column in the longitudinal direction of the laser beam irradiation. | 12-04-2008 |
20090009441 | ORGANIC EL DEVICE AND ORGANIC EL DISPLAY APPARATUS - In the present invention, there is provided an organic electro luminescence device including: an organic electro luminescence light emitting element; and a driving circuit for driving the organic electro luminescence light emitting element, wherein the driving circuit includes (A) an element driving transistor, (B) a video-signal write transistor, and (C) a capacitor having a pair of particular and other electrodes, with regard to the element driving transistor, (A-1) a source/drain area provided on a particular side of the element driving transistor to serve as a particular source/drain area of the element driving transistor is connected to a current supply section, and (A-2) a source/drain area provided on the other side of the element driving transistor to serve as another source/drain area of the element driving transistor is connected to the anode electrode of the organic electro luminescence light emitting element and the particular electrode of the capacitor, forming a second node. | 01-08-2009 |
20090085844 | Display device, driving method of the same and electronic apparatus using the same - A display device includes a pixel array section and a driving section. The pixel array section includes scanning lines arranged in rows, signal lines arranged in columns, and pixels arranged in a matrix. Each of the pixels includes at least a sampling transistor, a drive transistor, a holding capacitance, and a light-emitting device. The sampling transistor has its control terminal connected to the scanning line and its pair of current terminals connected between the signal line and the control terminal of the drive transistor. The drive transistor has one of its pair of current terminals connected to the light-emitting device and the other of its pair of current terminals connected to a power source. The holding capacitance is connected between the control and current terminals of the drive transistor. | 04-02-2009 |
20090085903 | Display device, driving method of the same and electronic apparatus using the same - A display device includes a pixel array section and a driving section. The pixel array section includes scanning lines arranged in rows, signal lines arranged in columns, and pixels arranged in a matrix. Each of the pixels includes at least a sampling transistor, a drive transistor, a holding capacitance, and a light-emitting device. The sampling transistor has its control terminal connected to the scanning line and its pair of current terminals connected between the signal line and the control terminal of the drive transistor. The drive transistor has one of its pair of current terminals connected to the light-emitting device and the other of its pair of current terminals connected to a power source. The holding capacitance is connected between the control and current terminals of the drive transistor. | 04-02-2009 |
20090102753 | DISPLAY DEVICE AND ELECTRONIC APPARATUS - Disclosed herein is a display device including: a plurality of sub-pixels configured to be arranged in a matrix and each include an electro-optical element having a structure in which a display functional layer is sandwiched between an upper electrode and a lower electrode; and an auxiliary interconnect contact configured to be formed in a pixel area in which the plurality of sub-pixels are arranged in a matrix and electrically connect the upper electrode to an auxiliary interconnect, wherein m (m is an integer equal to or larger than two) sub-pixels adjacent to each other along an arrangement direction of the sub-pixels are regarded as one group, and n (n is a natural number smaller than m) auxiliary interconnect contacts are formed for each group. | 04-23-2009 |
20090102760 | Display device and electronic apparatus have the same - A display device includes a pixel array portion in which sub-pixels each including an electro-optic element, a write transistor for writing a video signal, a hold capacitor for holding the video signal written by the write transistor, and a drive transistor for driving the electro-optic element in accordance with the video signal held in the hold capacitor are disposed in a matrix, and each unit pixel is composed of the plurality of adjacent sub-pixels belonging to a plurality of rows. The display device further includes power source supply lines through which power source potentials different in potential from one another are selectively supplied to the drive transistors. One power source supply line is wired every plural rows. | 04-23-2009 |
20090109208 | Display apparatus, driving method for display apparatus and electronic apparatus - Disclosed here in is a display apparatus, including, a pixel array section including a plurality of pixels arrayed in rows and columns and each including an electro-optical device, a pixel circuit provided commonly to each plural ones of the pixels in the same pixel row in the pixel array section and including a writing transistor for writing an image signal, a holding capacitor for holding the image signal written by the writing transistor and a driving transistor for driving the electro-optical devices of the plural pixels, and a plurality of scanning circuits configured to time-divisionally and selectively place the electro-optical devices included in the pixels into a forwardly biased state. | 04-30-2009 |
20090115708 | ACTIVE MATRIX DISPLAY DEVICE - An active matrix display device includes a driving section provided on a substrate, an insulating film stacked on the substrate, and light-emitting elements arranged in a matrix on the insulating film, and each of the light-emitting elements includes an light-emitting layer between its upper and lower electrodes, the active matrix display device being driven by the driving section provided for each of the light-emitting elements, the active matrix display device also including a first wiring required to cause the light-emitting element to emit light, and a second wiring disposed in the underlying layer of the first wiring via the insulating film, the second wiring also required to cause the light-emitting element to emit light, wherein the first or second wiring is branched into a plurality of wirings at the intersection between the two wirings. | 05-07-2009 |
20090115709 | Display apparatus, display-apparatus driving method and electronic instrument - Disclosed herein is a display apparatus including: a pixel array section including pixel circuits each having an electro optical device, a signal writing transistor, a signal storage capacitor, and a device driving transistor; and a pixel driving section, wherein: in a no-light emission period, the pixel driving section carries out a threshold-voltage correction process by changing an electric potential appearing on an electrode of the device driving transistor close to the electro optical device toward an electric potential obtained by subtracting the threshold voltage of the device driving transistor from the initialization electric potential of the gate electrode of the device driving transistor and a mobility correction process of negatively feeding a current flowing through the device driving transistor back to the gate electrode of the device driving transistor; and when a current is not flowing through the device driving transistor, the pixel driving section applies a positive bias voltage to the gate electrode of the signal writing transistor. | 05-07-2009 |
20090121974 | Display device, method for driving the same, and electronic apparatus - Disclosed herein is a display device including: a pixel array part configured to include scan lines disposed along rows, signal lines disposed along columns, and pixels that are disposed at intersections of the scan lines and the signal lines and are arranged in a matrix; and a drive part configured to have at least a write scanner that sequentially supplies a control signal to the scan lines to thereby carry out line-sequential scanning and a signal selector that supplies a video signal to the signal lines in matching with the line-sequential scanning. | 05-14-2009 |
20090179831 | Display Device - Any one of a write scanning line, a power source supply line, and a video signal line is structured as a subsidiary wiring disposed in the same layer as that having a lower electrode disposed therein. The subsidiary wiring is used in the power source supply line through which a power source drive pulse to be pulse-driven is transmitted, or other wirings (such as the write scanning line and the video signal line). | 07-16-2009 |
20090179838 | Display apparatus, driving method thereof and electronic instrument - An image display apparatus includes a pixel array section and a drive section configured to drive the pixel array section. The pixel array section is a pixel-circuit matrix with pixel circuits each serving as a matrix element. The drive section has at least a write scanner for supplying the control signal to each of the scan lines in order to carry out a sequential scanning operation on the scan lines for every field and a signal selector for supplying a video signal to each of the signal lines with a timing adjusted to the sequential scanning operation. Each of the pixel circuits employs at least a sampling transistor, a drive transistor, a signal holding capacitor and a light emitting device. | 07-16-2009 |
20090179839 | Display apparatus, method of driving display apparatus, and electronic apparatus - Disclosed herein is a display apparatus including a pixel array and a driver, the pixel array including rows of scanning lines, rows of feeding lines, columns of signal lines, and a matrix of pixels disposed at the crossings of the scanning lines and the signal lines, the driver including a write scanner for supplying a control signal successively to the scanning lines, a power supply scanner for switching each of the feeding lines between a high potential, a low potential, and an intermediate potential between the high potential and the low potential, and a signal selector for supplying a video signal, which alternately switches between a signal potential and a reference potential, to each of the signal lines. | 07-16-2009 |
20090184898 | Electroluminescent display panel and electronic apparatus - An electroluminescent display panel has pixel circuits for the active matrix driving system. Each pixel circuit has a thin-film transistor in which a portion of a pattern of a metal wiring material above the channel layer of the thin-film transistor is so laid out as to shield the channel region of the thin-film transistor. | 07-23-2009 |
20090201233 | Display device and electronic apparatus - A display device includes a drive section and a pixel array section including power lines, scanning lines, signal lines, and pixels in a matrix. Each pixel includes a sampling transistor, a drive transistor, a light-emitting element, and a storage capacitor. The drive section includes a write scanner supplying a control signal to one scanning line at a time, and a signal selector supplying a drive signal to each signal line. The sampling transistor applies the drive signal to the drive transistor. The drive transistor supplies a drive current based on the drive signal to the light-emitting element. The write scanner includes output buffers, each outputting a control signal including two pulses to a corresponding scanning line. Each output buffer includes first and second output sections, the first section outputting one pulse and the second section extracting a pulse from a pulse power supply and outputting the extracted pulse. | 08-13-2009 |
20090251493 | Pixel Circuit and Display Apparatus - It is aimed to increase efficiency and simplification of a pixel circuit having a threshold voltage correcting function. A sampling transistor Tr | 10-08-2009 |
20090262047 | EL display panel and electronic apparatus - Disclosed herein is an electroluminescence display panel including pixel circuits corresponding to an active-matrix drive system, the electroluminescence display panel including a structure configured to include first light-emitting areas corresponding to an emission color that is strongest in a characteristic of changing a threshold voltage of a thin film transistor and second light-emitting areas that correspond to another emission color and are each disposed between the first light-emitting areas, wherein a sampling transistor in each of the pixel circuits for driving the second light-emitting areas is disposed in an area corresponding to a range of one fourth to three fourths of a length from a peripheral edge of one of two first light-emitting areas that are adjacent to each other with intermediary of the second light-emitting area of the sampling transistor to a peripheral edge of the other of the two first light-emitting areas. | 10-22-2009 |
20100026612 | Display device and electronic apparatus - Disclosed herein is a sampling transistor in an embodiment of the present invention is kept at the on-state with a time width shorter than one horizontal cycle, during the period from the rising of a control pulse supplied from a scanner to a scan line WS to the falling of the control pulse, and samples a video signal from a signal line SL to write the video signal to a hold capacitor. The sampling transistor includes the channel region between the source and the drain and has a sandwich gate structure in which a shield that electrically shields the channel region is disposed on the other side of the channel region. This suppresses change in the threshold voltage of the sampling transistor. | 02-04-2010 |
20100033476 | Display device and electronic apparatus - A sampling transistor in embodiments of the present invention is kept at the on-state with a time width shorter than one horizontal cycle, during the period from the rising of a control pulse supplied from a scanner to the falling of the control pulse, and samples a video signal Vsig from a signal line SL to write the video signal Vsig to a hold capacitor. A sampling transistor T1 has a double gate structure in which a pair of transistor elements are connected in common. This suppresses change in the threshold voltage of the sampling transistor. | 02-11-2010 |
20100033477 | Display panel module and electronic apparatus - Disclosed herein is a self-light-emission-type display panel module including: a pixel array section including pixel areas laid out to form a 2-dimensional matrix in a display area to serve as pixel areas each having a signal holding capacitor, a device driving transistor, and a signal sampling transistor; and a third driving section configured to provide a second control line connected to the other main electrode of the device driving transistor sequentially from time to time with the three different driving voltages. | 02-11-2010 |
20100033511 | Display panel module and electronic apparatus - Disclosed herein is a self-light-emission-type display panel module wherein a second driving voltage is set at the magnitude of a voltage which drives a device driving transistor employed in each pixel areas to operate in a saturated region during a time span between a start of a period for compensating the device driving transistor and a point of time immediately lagging behind a start of a light emission period and drives the device driving transistor employed in each of the pixel areas each receiving a signal electric potential having a level at least equal to a gradation level determined in advance in a linear region, and a third driving voltage is set at the magnitude of a voltage which drives the device driving transistor employed in each the pixel areas for all gradation levels to operate in a saturated region during the light emission period. | 02-11-2010 |
20100045637 | Display device and display drive method - A display device includes: a pixel array including pixel circuits arranged in a matrix state, in which each pixel circuit has a light emitting element, a drive transistor, and a storage capacitor storing a threshold voltage of the drive transistor and an inputted signal value; a threshold correction operation means for performing a threshold correction operation plural times, which allows the storage capacitor to store the threshold voltage of the drive transistor by supplying a drive voltage to the drive transistor in a state in which a gate potential of the drive transistor is in a reference value before giving the signal value to the storage capacitor; and a cut-off control means for cutting off the drive transistor by supplying an intermediate voltage which is lower than the drive voltage to the drive transistor in a after-correction period which is the period after the period of the threshold correction operation. | 02-25-2010 |
20100045652 | Display device and display drive method - A display device includes: a pixel array including pixel circuits arranged in a matrix, each pixel circuit having a light emitting element, a drive transistor, and a storage capacitor storing a threshold voltage of the transistor and an inputted signal value; and a threshold correction operation means for performing a threshold correction operation plural times, which allows the storage capacitor to store the threshold voltage by applying a drive voltage to the transistor in a state where a gate potential of the transistor is fixed in a reference potential before giving the signal value to the storage capacitor. The threshold correction operation is started in a state where the gate potential is made a correction acceleration potential higher than the reference potential only at the threshold correction operation of the first half in the plural threshold correction operations, then, returns the gate potential to the reference potential to be fixed. | 02-25-2010 |
20100045654 | Display device and display drive method - A display device includes: a pixel array including pixel circuits arranged in a matrix state, in which each pixel circuit has a light emitting element, a drive transistor, and a storage capacitor storing a threshold voltage of the drive transistor and an inputted signal value; a threshold correction operation means for performing a threshold correction operation plural times, which allows the storage capacitor to store the threshold voltage of the drive transistor before giving the signal value to the storage capacitor; and a cut-off control means for allowing the drive transistor to be cut off in at least one after-correction period and for allowing the drive transistor not to be cut off in at least one after-correction period in plural after-correction periods which are periods after the plural threshold correction operation periods. | 02-25-2010 |
20100053226 | Image display apparatus and method for driving the same - The present invention sets power supply drive signals DS[ | 03-04-2010 |
20100079430 | Display panel module and electronic apparatus - A self-light-emission-type display panel module employs: a pixel array section including pixel areas laid out to form a two dimensional matrix in a display area to serve as pixel areas each having a signal holding capacitor, a device driving transistor, and a signal sampling transistor; a first driving section; a second driving section; and a third driving section. | 04-01-2010 |
20100085340 | Display apparatus - A display apparatus includes a panel in which a plurality of pixels illuminated by self-luminous elements are arranged in a matrix and a photodetector disposed on a back surface of the panel for measuring the luminance of the pixels. Each of the pixels has an aperture portion on a reflective layer provided below a luminous layer, to transmit light emitted from the luminous layer. | 04-08-2010 |
20100085345 | Display apparatus and display driving method - A display apparatus includes the following components. A pixel array includes matrix-arranged pixel circuits each including at least a light emitting element, a drive transistor in which a drive voltage is applied between the drain and the source to supply a current corresponding to a signal value supplied between the gate and the source to the light emitting element, and a holding capacitor which is connected between the gate and the source of the drive transistor and which holds the input signal value. A mobility correction operating unit supplies the drive voltage to the transistor while the capacitor holds a correction signal value lower than the signal value to perform mobility correction for the transistor. A light emission operating unit allows the capacitor to hold the signal value and supplies the drive voltage to the transistor after correction to perform light emission at a luminance corresponding to the signal value. | 04-08-2010 |
20100103156 | Image display apparatus and method of driving the image display apparatus - The present invention sets a scanning line to which a driving signal for power supply is output to a floating state in an entire period of pauses of threshold voltage correction processing or a partial period thereof. | 04-29-2010 |
20100103162 | Image display apparatus and method of driving the image display apparatus - The present invention retains a scanning line for power supply in a floating state in a pause provided halfway through a period of emission. | 04-29-2010 |
20100117932 | Display device and electronic product - A display device includes: a screen unit; a drive unit; and a signal processing unit, wherein the screen unit includes rows of scanning lines, columns of signal lines, matrix-state pixel circuits and a light sensor, the drive unit includes a scanner supplying a control signal to the scanning lines and a driver supplying a video signal to the signal lines, the screen unit is sectioned into plural regions each having plural pixel circuits, the pixel circuit emits light in accordance with the video signal, the light sensor is arranged with respect to each region and outputs a luminance signal in accordance with the light emission; and the signal processing unit corrects the video signal in accordance with the luminance signal and supplies the signal to the driver. | 05-13-2010 |
20100117998 | Display device and electronic product - A display device includes: a screen unit; a drive unit; and a signal processing unit, wherein the screen unit includes rows of scanning lines, columns of signal lines, matrix-state pixel circuits and a light sensor, the drive unit includes a scanner supplying a control signal to the scanning lines and a driver supplying a video signal to the signal lines, the pixel circuit emits light in accordance with the video signal, the light sensor outputs a luminance signal in accordance with the light emission, and the signal processing unit corrects the video signal in accordance with the luminance signal and supplies the signal to the driver. | 05-13-2010 |
20100118002 | Display device and electronic product - A display device includes: a screen unit; a drive unit; and a signal processing unit, and wherein the screen unit includes rows of scanning lines, columns of signal lines, matrix-state pixel circuits and a light sensor, the drive unit includes a scanner supplying a control signal to the scanning lines and a driver supplying a video signal to the signal lines, the screen unit is sectioned into plural regions each having plural pixel circuits, the drive unit allows plural pixel circuits belonging to different regions to simultaneously emit light, the pixel circuit emits light in accordance with the video signal, the light sensor outputs a luminance signal in accordance with the light emission and the signal processing unit corrects the video signal in accordance with the luminance signal and supplies the signal to the driver. | 05-13-2010 |
20100118003 | Display device and electronic product - A display device includes: a screen unit; a drive unit; a signal processing unit; and a selector, wherein the screen unit includes rows of scanning lines, columns of signal lines, matrix-state pixel circuits and a light sensor, the drive unit includes a scanner supplying a control signal to the scanning lines and a driver supplying a video signal to the signal lines, the screen unit is sectioned into plural regions each having plural pixel circuits, the pixel circuit emits light in accordance with the video signal, the light sensor is arranged with respect to each region and outputs a luminance signal in accordance with the light emission, the selector supplies plural luminance signals to the signal processing unit by switching the signals, and the signal processing unit corrects the video signal in accordance with the luminance signals and supplies the video signal to the driver. | 05-13-2010 |
20100118017 | ORGANIC ELECTROLUMINESCENT LIGHT EMITTING UNIT DRIVING METHOD - An organic electroluminescent light emitting unit driving method includes a process (a) to execute preprocessing, a process (b) to execute threshold voltage cancellation processing, a process (c) to execute writing processing, a process (d) to set a first node to a floating state, and a process (e) to execute a series of processes at least once wherein after driving an organic electroluminescent light emitting unit, a reverse voltage is applied between the anode and cathode electrodes of the organic electroluminescent light emitting unit, with a series of processes (a) through (e) being repeated, with an auxiliary driving process being provided wherein a forward voltage is applied between the anode and cathode electrodes of the organic electroluminescent light emitting unit over a certain period, and with a period between the termination of the auxiliary driving process and the termination of the next process (b) being suppressed to 1 millisecond or less. | 05-13-2010 |
20100123837 | Display device - A display device includes: a panel in which plural pixels that emit lights according to a video signal are sectioned into plural areas; a light reception sensor that is arranged in each of the areas and outputs a light reception signal according to light emission luminance; and signal processing means. The area includes first and second pixel groups including at least one pixel and plural pixels other than the first pixel group, respectively. The signal processing means includes arithmetic means for outputting an arithmetic signal according to arithmetic operation of an offset value and a light reception value; converting means for outputting digital data according to the arithmetic signal; and correcting means for correcting the video signal according to the digital data and supplying the corrected video signal to the first pixel group. | 05-20-2010 |
20100123838 | Display device - A display device includes: a panel in which plural pixels emitting lights according to a video signal are sectioned into plural areas; a light reception sensor arranged in each of the areas and outputting a light reception signal according to light emission luminance; converting means for outputting digital data according to the light reception signal; and signal processing means. The area includes first and second pixel groups including at least one pixel and plural pixels other than the first pixel group, respectively. The signal processing means corrects the video signal according to arithmetic operation of digital data obtained when the first and the second pixel groups are caused to emit lights at predetermined light emission luminance and digital data obtained when light emission luminance of the second pixel group is maintained and that of the first pixel group is changed, and supplies the corrected signal to the first pixel group. | 05-20-2010 |
20100141627 | Method of driving organic electroluminescence display apparatus - A display apparatus includes a plurality of light-emitting elements, a driving circuit disposed in each of the plurality of light emitting elements, scanning lines, emission control lines, and data lines. Here, each driving circuit includes a driving transistor supplying current to the corresponding light-emitting element, changes the emission control signal from a first voltage value to a second voltage value to make the light-emitting element be in a non-emission state, and changes the emission control signal from the second voltage value to the first voltage value to correct the threshold voltage of the driving transistor, and the emission control signal has the first voltage value in a period other than a period of the second voltage value for correcting the threshold voltage of the driving transistor in a subsequent non-emission period. | 06-10-2010 |
20100149079 | Display device, method of driving display device, and electronic apparatus - A display device includes: a screen section; a drive section; and a signal processing section. The screen section includes scanning lines arranged in rows, signal lines arranged in columns, and pixel circuits arranged in a matrix. The drive section includes a scanner which supplies a control signal to the scanning lines, and a driver which supplies a video signal to the signal lines. Each of the pixel circuits includes a light-emitting element, a light-receiving element, and a drive transistor. The drive transistor outputs a drive current in response to the video signal and outputs a correction current in response to a luminance signal. The light-emitting element emits light in accordance with the drive current. The light-receiving element outputs the luminance signal in accordance with the light-emission. The signal processing section corrects the video signal in accordance with the correction current and supplies the corrected video signal to the driver. | 06-17-2010 |
20100149146 | Display - A display includes: a panel in which a plurality of pixels emitting light in response to a video signal are arranged; a light-receiving sensor outputting a light-reception signal in accordance with the light-emission of each pixel; calculation means for calculating correction data on the basis of the light-receiving signal; and drive control means for correcting the video signal on the basis of the correction data, wherein the light-receiving sensor is adhered to an outermost substrate constituting the panel by using a material with a refractive index which is equal to or smaller than that of the substrate. | 06-17-2010 |
20100171738 | Driving method of organic electroluminescence emission part - A driving method of a display device having a driving transistor and a display element, one source/drain region of the driving transistor connected to a power supply part, the other source/drain region connected to an anode electrode provided in the display element, the method includes the steps of: setting a potential of the anode electrode by applying a predetermined intermediate voltage to the anode electrode so that a potential difference between the anode electrode of the display element and a cathode electrode at the other end of the display element does not exceed a threshold voltage of the display element; and then holding the driving transistor in OFF-state while a drive voltage is applied from the power supply part to one source/drain region of the driving transistor. | 07-08-2010 |
20100231568 | Display apparatus and method of driving the same - Driving a display apparatus by performing write processing for applying an auxiliary video signal to a corresponding data line, then, applying a video signal, instead of the auxiliary video signal, to the corresponding data line, and in a state where a predetermined drive voltage is applied from a power supply portion to one area of the source and drain areas of a drive transistor, applying a voltage based on the auxiliary video signal and a voltage based on the video signal from the corresponding data line to the gate electrode of the drive transistor through a write transistor which is turned on in response to a scanning signal from the corresponding scanning line. | 09-16-2010 |
20100259533 | DISPLAY AND A METHOD OF DRIVING THE SAME - A display includes: a pixel circuit array section including a plurality of light-emitting elements and a plurality of pixel circuits; a scanning line drive circuit sequentially selecting the plurality of light-emitting elements and the plurality of the pixel circuits; a signal line drive circuit writing a light emission potential corresponding to a signal potential to a selected pixel circuit; and a control circuit, in which in each frame period, the control circuit outputs a light-off control signal at a lapse of a first period after writing the light emission potential to the selected pixel circuit by the signal line drive circuit, and then the control circuit outputs a light-on control signal at a lapse of a second period, and after that, the control circuit outputs a light-off control signal at a lapse of a third period which is longer than the first period. | 10-14-2010 |
20100271354 | Display apparatus, driving method thereof, and electronic system - A display apparatus includes: a pixel array section including a row of scanning lines, a column of signal lines, and pixels in a matrix, each of the pixels disposed at an intersection of both of the lines; and a drive section. The drive section performs line progressive scanning on the pixels. The pixel includes a light emitting device, a sampling transistor, a driving transistor, a switching transistor, and a holding capacitor. The sampling transistor samples a video signal in the holding capacitor, the driving transistor changes the device to a luminous state, the switching transistor becomes ON in advance of the sampling of the video signal to change the light emitting device to a non-luminous state, and the sampling transistor takes in the OFF voltage from the signal line to the driving transistor, thereby preventing a penetration current from flowing from the power source toward the fixed potential. | 10-28-2010 |
20110012876 | Display device and electronic equipment - A display device is disclosed. The display device includes: a pixel array unit and a driving unit which drives the pixel array unit. The pixel array unit includes rows of first scanning lines and second scanning lines, columns of signals, pixels in a matrix state arranged at portions where the scanning lines and the signal lines cross each other and power supply lines and ground lines supplying power to respective pixels. The driving unit includes a first scanner performing line-sequential scanning to pixels by each row by supplying a first control signal to each first scanning line sequentially, a second scanner supplying a second control signal to each second scanning line sequentially so as to correspond to the line-sequential scanning and a signal selector supplying a video signal to rows of signal lines so as to correspond to the line-sequential scanning. | 01-20-2011 |
20110012935 | DISPLAY UNIT - A display unit with which luminance is able to be improved and a wide view angle is able to be secured while increase of the power consumption is inhibited is provided. The display unit includes a first region placing priority on front face luminance in which an aperture ratio of a light emitting region is relatively small, a second region placing priority on view angle luminance in which the aperture ratio of the light emitting region is relatively large, and a drive means for driving the first region and the second region. | 01-20-2011 |
20110043502 | DISPLAY DEVICE AND ELECTRONIC APPARATUS - A display device includes: a dummy pixel provided on a display panel; a reflection film provided on a light-emitting-surface side of the display panel for reflecting light emitted from the dummy pixel; a photodetector provided on an opposite side of the display panel from the light-emitting surface for detecting the light emitted from the dummy pixel and reflected from the reflection film; and a correction circuit for correcting, based on the results of detection by the photodetector, the luminance of effective pixels that contribute to image display. | 02-24-2011 |
20110080437 | Display device, driving method of display device, and electronic apparatus - A display device includes: first dummy pixels including a self-emission element emitting first color light corresponding to emission colors of pixels in a display area; second dummy pixels including a self-emission element emitting the first color light and a self-emission element emitting second color light and causing both self-emission elements to emit light at the same time; a deterioration degree calculating unit calculating a deterioration degree in brightness of the self-emission element emitting the first color light on the basis of a brightness detection result of the first dummy pixels and calculating a deterioration degree in current flowing in the self-emission element emitting the first color light on the basis of brightness detection results of the first and second dummy pixels; and a correction unit correcting the brightness of effective pixels contributing to an image display on the basis of the deterioration degree in brightness and the deterioration degree in current calculated by the deterioration degree calculating unit. | 04-07-2011 |
20110096046 | Display apparatus, method of driving a display, and electronic device - In a display apparatus including a correction unit and a switching transistor, the correction unit operates in a non-light emission period such that a correction voltage for eliminating an effect of a variation in a characteristic of a driving transistor is stored in a storage capacitor. The switching transistor is disposed between one current terminal of the driving transistor and a light emitting element. The switching transistor turns off during the non-light emission period thereby to electrically disconnect the light emitting element from the one current terminal of the driving transistor thereby preventing a leakage current from flowing through the light emitting element during the period in which the correction unit operates, and thus preventing the correction voltage from having an error due to the leakage current. | 04-28-2011 |
20110122324 | Display apparatus, method of driving the display device, and electronic device - A display device, which may control start or stop of light emission of an organic EL element without increasing the number of elements, a method of driving the display device, and an electronic device having the display device are provided. The display device includes: a display section having sets of light emitting elements and pixel circuits arranged two-dimensionally; and a drive section driving each of the pixel circuits based on a video signal. The pixel circuit has a dual-gate first transistor having a first gate and a second gate and controlling electric current flowing into each of the light emitting elements, and a second transistor writing a signal voltage into the first gate in accordance with the video signal. The drive section applies voltage different between for starting light emission of the light emitting element and for stopping light emission of the light emitting element to the second gate. | 05-26-2011 |
20110122325 | Display device, method of driving the display device, and electronic device - A display device, which may achieve low power consumption without disturbing high resolution, a method of driving the display device, and an electronic device having the display device are provided. The display device includes: a display section having sets of light emitting elements and pixel circuits arranged two-dimensionally; and a drive section driving each of the pixel circuits based on a video signal. The pixel circuit has a dual-gate first transistor having a first gate and a second gate and controlling electric current flowing into each of the light emitting elements, and a second transistor writing a signal voltage into the first gate in accordance with the video signal. The drive section applies the signal voltage to the pixel circuit such that at least part of values of gate-to-source voltage of the first transistor in a usable range is 5 V or lower. | 05-26-2011 |
20110134101 | Display device, method of driving the display device, and electronic device - A display device that may be controlled to be reduced in power consumption, a method of driving the display device, and an electronic device having the display device are provided. The display device includes: a display section including a display region in which a plurality of display pixels are arranged two-dimensionally, the display pixels having first light emitting elements, and a non-display region in which one or multiple adjustment pixels are arranged, each adjustment pixel having a second light emitting element; and a drive section driving each display pixel based on a video signal, and driving the adjustment pixel based on a fixed signal. The drive section applies a power-supply voltage, having a value corresponding to voltage variation in the second light emitting element when the second light emitting element emits light, to each display pixel. | 06-09-2011 |
20110134153 | Display apparatus and driving method therefor - A display apparatus includes a pixel array section and a driving section configured to drive the pixel array section. The pixel array section includes a plurality of first scanning lines and a plurality of second scanning lines extending along rows, a plurality of signal lines extending along columns, a plurality of pixels arranged in a matrix at positions at which the first and second scanning lines and the signal lines intersect with each other, and a plurality of power supply lines and a plurality of ground lines configured to perform feeding to the pixels. The driving section includes a first scanner, a second scanner, and a signal selector. Each of the pixels includes a light emitting element, a sampling transistor, a drive transistor, a switching transistor, and a pixel capacitance. | 06-09-2011 |
20110134340 | Display device, method of driving the display device, and electronic device - A display device capable of reducing power consumption, a method of driving the display device, and an electronic device having the display device are provided. A display panel has a display region in which a plurality of display elements are arranged two-dimensionally, each display element including a first organic EL element and a pixel circuit, and a non-display region in which one adjustment pixel including a second organic EL element is disposed. A power-supply voltage adjusting circuit sets a value as a latest power-supply voltage, the value being given by adding voltage variation, which is obtained when a constant current having a magnitude necessary for light emission with white luminance (the highest gray level) of the second organic EL element is applied to the second organic EL element, to an initially set power-supply voltage. A power line drive circuit sequentially applies the set power-supply voltage to power lines. | 06-09-2011 |
20110163943 | Image display device and electronic appliance - An image display device includes: a pixel array part formed of first to fourth scanning lines arranged in rows, signal lines arranged in columns, pixel circuits in a matrix connected to the scanning lines and signal lines, and a plurality of power source lines which supplies first to third potentials necessary for the operations of pixel circuit; a signal part which supplies a video signal to the signal lines; and a scanner part which supplies a control signal to the first to fourth scanning lines, and in turn scans the pixel circuit for every row, wherein the pixel circuits include a sampling transistor, a drive transistor, first to third switching transistors, a pixel capacitance, and a light emitting device, and a channel length of the drive transistor is made longer than a channel length of the switching transistors to suppress fluctuations in threshold voltage. | 07-07-2011 |
20110169802 | Signal processing apparatus, display apparatus, electronic apparatus, signal processing method and program - A signal processing apparatus including a conversion efficiency degradation value calculation section adapted to calculate a conversion efficiency degradation value regarding degradation of a conversion efficiency when driving current supplied to a light emitting element in each of a plurality of pixel circuits is converted into a luminance based on information regarding degradation of the conversion efficiency produced in response to lapse of light emission time of the light emitting element; a current amount degradation value calculation section adapted to calculate a current amount degradation value regarding degradation of the driving current based on information regarding degradation of the driving current produced in response to lapse of the light emission time of the light emitting element; and a correction section adapted to correct a gradation value of an image signal to be inputted to the pixel circuit based on the conversion efficiency degradation value and the current amount degradation value. | 07-14-2011 |
20110169812 | Pixel circuit, display device, driving method of pixel circuit, and driving method of display device - A pixel circuit, disposed at a part where a scanning line and a signal line intersect each other, includes at least an electrooptic element, a drive transistor, a sampling transistor, and a retaining capacitance. The drive transistor has a gate connected to an input node, a source connected to an output node, and a drain connected to a predetermined power supply potential and supplies a driving current to the electrooptic element according to a signal potential retained in the retaining capacitance. The electrooptic element has one terminal connected to the output node and another terminal connected to a predetermined potential. The sampling transistor is connected between the input node and the signal line and operates when selected by the scanning line, samples an input signal from the signal line, and retains the input signal in the retaining capacitance. The retaining capacitance is connected to the input node. The pixel circuit further includes a compensating circuit which detects a decrease in the driving current from a side of the output node and feeds back a result of detection to a side of the input node to compensate for a decrease in the driving current, which decrease is attendant on a secular change of the drive transistor. | 07-14-2011 |
20110187699 | Pixel circuit, display and driving method thereof - The invention provides a pixel circuit that can cancel the influence of the mobility of a drive transistor. A drive transistor supplies a light-emitting element with an output current dependent upon an input voltage. The light-emitting element emits light with a luminance dependent upon a video signal in response to the output current supplied from the drive transistor. The pixel circuit includes a correction unit that corrects the input voltage held by a capacitive part in order to cancel the dependence of the output current on the carrier mobility. | 08-04-2011 |
20110193843 | Display device and electronic apparatus - A transistor connected to a power source for driving a light-emitting element driving transistor and a transistor setting to a predetermined voltage a source voltage of the light-emitting element driving transistor are commonly controlled by a control signal that takes one of three levels. | 08-11-2011 |
20110213075 | POLYIMIDE RESIN COMPOSITION FOR SEMICONDUCTOR DEVICES, METHOD OF FORMING FILM IN SEMICONDUCTOR DEVICES USING THE SAME AND SEMICONDUCTOR DEVICES - Disclosed is a polyimide composition for semiconductor devices, which has a rheological characteristics suited for screen printing and dispense coating, which has an improved wetting property with various coating bases, by which continuous printing of 500 times or more can be attained, with which blisters, cissing and pinholes are not generated after printing and drying or during drying or curing, which can coat a desired area. A method of forming a film in a semiconductor and semiconductors having the film formed by this method as an insulation film, protective film or the like are also disclosed. The composition for semiconductor devices contains a mixed solvent of a first organic solvent (A) and a second organic solvent (B); and a polyimide resin having at least one group selected from the group consisting of alkyl groups and perfluoroalkyl groups in recurring units, and having thixotropic property, the polyimide resin being dissolved in the mixed solvent. | 09-01-2011 |
20110242143 | Signal processing apparatus, display apparatus, electronic apparatus, signal processing method and program - Disclosed herein is a signal processing apparatus, including: a luminance degradation information production section adapted to produce luminance degradation information regarding degradation of a luminance in accordance with a temperature condition upon emission; a luminance degradation value calculation section adapted to calculate a luminance degradation value regarding degradation of the luminance for each pixel circuit; and a correction section adapted to correct the gradation value of an image signal to be inputted to the pixel circuit based on the luminance degradation value. | 10-06-2011 |
20110279439 | Display apparatus, method of driving a display, and electronic device - In a display apparatus including a switching transistor, a correction voltage for eliminating an effect of a variation in a characteristic of a driving transistor is stored in a storage capacitor. The switching transistor is disposed between one current terminal of the driving transistor and a light emitting element. The switching transistor turns off during the non-light emission period thereby to electrically disconnect the light emitting element from the one current terminal of the driving transistor thereby preventing a leakage current from flowing through the light emitting element during the period in which the correction unit operates, and thus preventing the correction voltage from having an error due to the leakage current. | 11-17-2011 |
20120012947 | SEMICONDUCTOR DEVICE - A semiconductor device includes a gate pad, a gate wiring conductor connected to the gate pad, and a gate electrode formed under the gate pad and the gate wiring conductor. Portions of the gate electrode closer to the gate pad have a higher resistance per unit area than portions of the gate electrode farther away from the gate pad. | 01-19-2012 |
20120044130 | DISPLAY APPARATUS AND ELECTRONIC APPARATUS - A display apparatus includes a pixel unit in which pixels are arranged in a matrix pattern; and a driving circuit for driving the pixel unit. Each of the pixels includes a signal level holding capacitor; a first transistor that is turned on/off in response to a writing signal and via which one end of the signal level holding capacitor is connected to a signal line; a second transistor having one end of the signal level holding capacitor connected to a gate thereof and the other end of the signal level holding capacitor connected to a source thereof; a current-driven self-light-emitting element whose cathode is held at a cathode potential and whose anode is connected to the source of the second transistor; a third transistor that is turned on/off in response to a driving pulse signal; and a fourth transistor that is turned on/off in response to a control signal. | 02-23-2012 |
20120062620 | Display apparatus and drive method therefor, and electronic equipment - A drive section sequentially supplies respective scanning lines with a control signal and supplies respective signal lines with a video signal to carry out a correction operation for holding a voltage equivalent to a threshold voltage of a drive transistor in a holding capacitance, and subsequently performs a write operation for writing the video signal in the holding capacitance, and before the correction operation, the drive section switches potentials at the bias line and adds a coupling voltage to one current terminal of the drive transistor via an auxiliary capacitance to carry out a preparation operation for an initialization to set a potential difference between a control terminal and the one current terminal of the drive transistor larger than the threshold voltage. | 03-15-2012 |
20120120036 | DISPLAY APPARATUS, METHOD OF DRIVING A DISPLAY, AND ELECTRONIC DEVICE - In a display apparatus including a switching transistor, a correction voltage for eliminating an effect of a variation in a characteristic of a driving transistor is stored in a storage capacitor. The switching transistor is disposed between one current terminal of the driving transistor and a light emitting element. The switching transistor turns off during the non-light emission period thereby to electrically disconnect the light emitting element from the one current terminal of the driving transistor thereby preventing a leakage current from flowing through the light emitting element during the period in which the correction unit operates, and thus preventing the correction voltage from having an error due to the leakage current. | 05-17-2012 |
20120154352 | DISPLAY APPARATUS - A display apparatus includes: a display panel that includes display elements having a current-driven light-emitting portion and that displays an image on the basis of a video signal; and a luminance correcting unit that corrects the luminance of the display elements when the display panel displays an image by correcting a gradation value of an input signal and outputting the corrected input signal as the video signal. The luminance correcting unit includes an operating time conversion factor holder, a reference operating time calculator, an accumulated reference operating time storage, a reference curve storage, a gradation correction value holder, and a video signal generator. | 06-21-2012 |
20120154453 | DISPLAY APPARATUS AND DISPLAY APPARATUS DRIVING METHOD - A display apparatus includes: a display panel that includes display elements having a current-driven light-emitting portion, in which the display elements are arranged in a two-dimensional matrix in a first direction and a second direction, and that displays an image on the basis of a video signal; and a luminance correcting unit that corrects the luminance of the display elements when displaying an image on the display panel by correcting a gradation value of an input signal and outputting the corrected input signal as the video signal. The luminance correcting unit includes a reference operating time calculator, an accumulated reference operating time storage, a reference curve storage, a gradation correction value holder, and a video signal generator. | 06-21-2012 |
20120154682 | DISPLAY APPARATUS AND DISPLAY APPARATUS DRIVING METHOD - A display apparatus includes: a display panel that includes display elements having a current-driven light-emitting portion, in which the display elements are arranged in a two-dimensional matrix in a first direction and a second direction, and that displays an image on the basis of a video signal; and a luminance correcting unit that corrects the luminance of the display elements when displaying an image on the display panel by correcting a gradation value of an input signal and outputting the corrected input signal as the video signal. The luminance correcting unit includes a reference operating time calculator, an accumulated reference operating time storage, a reference curve storage, a gradation correction value holder, and a video signal generator. | 06-21-2012 |
20120154683 | Display apparatus and display apparatus driving method - A display apparatus includes: a display panel that includes display elements having a current-driven light-emitting portion, in which the display elements are arranged in a two-dimensional matrix in a first direction and a second direction, and that displays an image on the basis of a video signal; and a luminance correcting unit that corrects the luminance of the display elements when displaying an image on the display panel by correcting a gradation value of an input signal and outputting the corrected input signal as the video signal. The luminance correcting unit includes a reference operating time calculator, an accumulated reference operating time storage, a reference curve storage, a black-level shift amount holder, and a video signal generator. | 06-21-2012 |
20120162164 | PIXEL CIRCUIT AND DISPLAY DEVICE - A pixel circuit able to prevent a spread of the terminal voltages of drive transistors inside a panel and in turn able to reliably prevent deterioration of uniformity, wherein a source of a TFT serving as a drive transistor is connected to an anode of a light emitting element, a drain is connected to a power source potential, a capacitor is connected between a gate and source of the TFT, and a source potential of the TFT is connected to a fixed potential through a TFT serving as a switch transistor and wherein pixel circuit lines are connected by an upper line and bottom line and are arranged in parallel with pixel circuit power source voltage lines so as not to have intersecting parts. | 06-28-2012 |
20120162188 | SIGNAL PROCESSING DEVICE AND DISPLAY APPARATUS - A signal processing device includes: a switching element for driving supplying a driving current supplied from a power supply section to a light emitting portion; and a cutoff element cutting off the switching element for driving according to a cutoff signal supplied before a threshold voltage adjusting signal for adjusting a threshold voltage of the switching element for driving is supplied to the switching element for driving from a signal line for supplying the threshold voltage adjusting signal. | 06-28-2012 |
20120162280 | SIGNAL PROCESSING DEVICE, SIGNAL PROCESSING METHOD, DISPLAY DEVICE, AND ELECTRONIC APPARATUS - A signal processing device measures an actual luminance of a pixel circuit having a light-emitting device every update period by setting levels of gradation values. A conversion efficiency value is calculated for the light-emitting device to convert a driving current supplied in accordance with a gradation value into a luminance based on the luminance value and a gradation value corresponding to the luminance value. A driving current corresponding to the luminance value is calculated, and a comparison is made of the relationship between the driving current and a gradation value corresponding to the luminance value with the relationship between a driving current and a gradation value when the pixel circuit is in a correction reference state. This is used to calculate a current amount deterioration value of a driving current of the pixel circuit, and generates current amount deterioration characteristic information of the pixel circuit. | 06-28-2012 |
20120162284 | Signal processing device, signal processing method, display device, and electronic apparatus - A signal processing device includes a measuring unit, a conversion efficiency calculation unit, and a conversion efficient deterioration value calculation unit. The measuring unit outputs levels of driving signals having different magnitudes every update period to drive a pixel circuit and measures the luminance of the pixel circuit when driven accordingly. The conversion efficiency calculation unit calculates a conversion efficiency value of the pixel circuit based on the relationship between driving current value and luminance value. The conversion efficiency deterioration value calculation unit compares the conversion efficiency value of the pixel circuit with a conversion efficiency value of a correction reference state, calculates a conversion efficiency deterioration value corresponding to an elapsed time from the correction reference state, and updates luminance deterioration information with the conversion efficiency deterioration value. | 06-28-2012 |
20120162285 | SIGNAL PROCESSING DEVICE, SIGNAL PROCESSING METHOD, DISPLAY DEVICE, AND ELECTRONIC APPARATUS - A signal processing device measures an actual luminance of a light-emitting device by setting levels of gradation values indicating the degree of light emission to a pixel circuit having the light-emitting device to generate measurement information. The device also calculates gradation deterioration characteristics based on the measurement information and the relationship between a gradation value and a luminance value when the pixel circuit is in a correction reference state. A deterioration value calculation calculates a conversion efficiency deterioration value of conversion efficiency for the light-emitting device to convert a driving current supplied for a gradation value into a luminance to generate conversion efficiency deterioration characteristic information. Finally, the device calculates current amount deterioration value that calculates a current amount deterioration value regarding deterioration of a driving current of the pixel circuit based on the gradation deterioration characteristic to generate current amount deterioration characteristic information of the prescribed pixel circuit. | 06-28-2012 |
20120169794 | PIXEL CIRCUIT, DISPLAY DEVICE, AND METHOD OF DRIVING PIXEL CIRCUIT - A pixel circuit, display device, and method of driving a pixel circuit enabling source-follower output with no deterioration of luminance even with a change of the current-voltage characteristic of the light emitting element along with elapse, enabling a source-follower circuit of n-channel transistors, and able to use an n-channel transistor as an EL drive transistor while using current anode-cathode electrodes, wherein a source of a TFT | 07-05-2012 |
20120175647 | DISPLAY DEVICE AND ELECTRONIC APPARATUS - A display device including: a plurality of sub-pixels arranged in a matrix, each including an electro-optical element having a structure in which a display functional layer is sandwiched between an upper electrode and a lower electrode; and an auxiliary interconnect contact in a pixel area in which the plurality of sub-pixels are arranged in a matrix and electrically connecting the upper electrode to an auxiliary interconnect, wherein m (m is an integer equal to or larger than two) sub-pixels adjacent to each other along an arrangement direction of the sub-pixels are regarded as one group, and n (n is a natural number smaller than m) auxiliary interconnect contacts are formed for each group. | 07-12-2012 |
20120176360 | DISPLAY DEVICE AND ELECTRONIC EQUIPMENT - A display device includes: a pixel array section; and a drive section, the pixel array section including scan lines, signal lines, pixels, and power lines, the drive section including a main scanner, a drive scanner, and a signal selector, wherein each of the pixels includes a light-emitting element, sampling transistor, drive transistor, and holding capacitor. | 07-12-2012 |
20120182281 | DISPLAY DEVICE AND ELECTRONIC APPARATUS - A sampling transistor in embodiments of the present invention is kept at the on-state with a time width shorter than one horizontal cycle, during the period from the rising of a control pulse supplied from a scanner to the falling of the control pulse, and samples a video signal Vsig from a signal line SL to write the video signal Vsig to a hold capacitor. A sampling transistor T | 07-19-2012 |
20120206324 | DISPLAY DEVICE AND ELECTRONIC EQUIPMENT - A display device is disclosed. The display device includes: a pixel array unit and a driving unit which drives the pixel array unit. The pixel array unit includes rows of first scanning lines and second scanning lines, columns of signals, pixels in a matrix state arranged at portions where the scanning lines and the signal lines cross each other and power supply lines and ground lines supplying power to respective pixels. The driving unit includes a first scanner performing line-sequential scanning to pixels by each row by supplying a first control signal to each first scanning line sequentially, a second scanner supplying a second control signal to each second scanning line sequentially so as to correspond to the line-sequential scanning and a signal selector supplying a video signal to rows of signal lines so as to correspond to the line-sequential scanning. | 08-16-2012 |
20120248475 | DISPLAY UNIT AND METHOD OF MANUFACTURING THE SAME - A display unit includes, on a substrate, a plurality of organic EL devices, and an insulating film provided in an inter-device region between the plurality of organic EL devices, the insulating film including a groove in a position between the organic EL devices adjacent to each other. | 10-04-2012 |
20120313922 | DISPLAY DEVICE, PIXEL CIRCUIT, ELECTRONIC APPARATUS, AND METHOD OF DRIVING DISPLAY DEVICE - A display device includes a display portion, a hold capacitor, a write transistor writing a drive voltage corresponding to a video signal to the hold capacitor, a drive transistor driving the display portion in accordance with the drive voltage written to the hold capacitor, and a pulse width adjusting portion adjusting a width of a pulse signal causing a drive pulse used to drive at least one of the write transistor and the drive transistor so as to correspond to an environmental change. | 12-13-2012 |
20130002635 | DISPLAY DEVICE, DISPLAY DEVICE DRIVING METHOD, AND ELECTRONIC APPARATUS - A display device includes a pixel array portion and a driving portion for driving the pixel array portion. The pixel array portion includes row scanning lines, column signal lines, and pixels arranged in a matrix form at intersections of the scanning lines and the signal lines. The driving portion includes a write scanner for supplying a control signal to each of the scanning lines by sequentially scanning the scanning lines in each field and a signal selector for supplying a video signal to each of the signal lines in synchronization with the sequential scanning. The pixels each includes a storage capacitor, a light-emitting element, a sampling transistor for being turned on in response to the control signal, sampling the video signal, and storing the video signal in the storage capacitor, and a drive transistor for supplying a driving current to the light-emitting element in accordance with the stored video signal. | 01-03-2013 |
20130009854 | PIXEL CIRCUIT, DISPLAY DEVICE, DRIVING METHOD OF PIXEL CIRCUIT, AND DRIVING METHOD OF DISPLAY DEVICE - A display device including pixel circuits arranged in a form of a matrix, with the pixel circuits respectively including an electro-optical element, a drive transistor, a sampling transistor, and a capacitive element. The sampling transistor samples a signal from the signal line in the capacitive element. The drive transistor and the electro-optical element are arranged in series to form a current path between a power supply line and a ground line. The drive transistor is configured to control a driving current through the current path according to a signal potential stored in the capacitive element. Compensation for driving current dependence on a characteristic of the drive transistor is provided, with such compensation being based upon a current through the current path occurring before a light emission period. | 01-10-2013 |
20130038593 | PIXEL CIRCUIT, DISPLAY DEVICE, DRIVING METHOD OF PIXEL CIRCUIT, AND DRIVING METHOD OF DISPLAY DEVICE - A pixel circuit includes a compensating circuit that detects a decrease in the driving current from an output node side of a drive transistor and feeds back detection results to an input node side of the drive transistor to compensate for a decrease in the driving current, which decrease is attendant on a secular change of the drive transistor. | 02-14-2013 |
20130057535 | DISPLAY APPARATUS, METHOD OF DRIVING DISPLAY APPARATUS, AND ELECTRONIC APPARATUS - Disclosed herein is a display apparatus including a pixel array and a driver, the pixel array including rows of scanning lines, rows of feeding lines, columns of signal lines, and a matrix of pixels disposed at the crossings of the scanning lines and the signal lines, the driver including a write scanner for supplying a control signal successively to the scanning lines, a power supply scanner for switching each of the feeding lines between a high potential, a low potential, and an intermediate potential between the high potential and the low potential, and a signal selector for supplying a video signal, which alternately switches between a signal potential and a reference potential, to each of the signal lines. | 03-07-2013 |
20130113692 | DISPLAY AND METHOD FOR MANUFACTURING DISPLAY - A display includes a pixel array part with pixels that each have at least one transistor whose conduction state is controlled by a drive signal input to a control terminal, and a scanner including a plurality of buffers that are formed of transistors. The buffers correspond to a pixel arrangement and output a drive signal to the control terminals of the transistors of the pixels. The transistors of the pixels and the transistors of the buffers are formed through irradiation with laser light that is moved for scanning in a predetermined direction and has a predetermined wavelength. The transistors in the buffers are formed in such a way that the channel length direction of the transistors is set parallel to the scan direction of the laser light. | 05-09-2013 |
20130127802 | DISPLAY APPARATUS, METHOD OF DRIVING A DISPLAY, AND ELECTRONIC DEVICE - In a display apparatus including a switching transistor, a correction voltage for eliminating an effect of a variation in a characteristic of a driving transistor is stored in a storage capacitor. The switching transistor is disposed between one current terminal of the driving transistor and a light emitting element. The switching transistor turns off during the non-light emission period thereby to electrically disconnect the light emitting element from the one current terminal of the driving transistor thereby preventing a leakage current from flowing through the light emitting element during the period in which the correction unit operates, and thus preventing the correction voltage from having an error due to the leakage current. | 05-23-2013 |
20130147692 | DISPLAY DEVICE - Any one of a write scanning line, a power source supply line, and a video signal line is structured as a subsidiary wiring disposed in the same layer as that having a lower electrode disposed therein. The subsidiary wiring is used in the power source supply line through which a power source drive pulse to be pulse-driven is transmitted, or other wirings (such as the write scanning line and the video signal line). | 06-13-2013 |
20130147695 | DISPLAY, METHOD FOR DRIVING DISPLAY, ELECTRONIC APPARATUS - Disclosed herein is a display including, a pixel array section configured to include power feed lines, scan lines disposed along rows, signal lines disposed along columns, and pixels that are disposed at intersections of the scan lines and the signal lines and are arranged in a matrix, each of the pixels including a drive transistor and a light-emitting device, one of a pair of current terminals as source and drain of the drive transistor being connected to the power feed line, and a power supply scanner configured to sequentially switch potential of each power feed line between higher potential and lower potential, wherein the power supply scanner switches the higher potential applied to the power feed line between first higher potential and second higher potential at different levels in a predetermined sequence. | 06-13-2013 |
20130176324 | DISPLAY DEVICE, ELECTRONIC APPARATUS, DISPLAYING METHOD, AND PROGRAM - Disclosed herein is a display device including: a sampling block sampling image data continuously inputted thereto at predetermined intervals; a gradation value/deterioration amount converting block converting a gradation value of an image based on the image data sampled in the sampling block into a deterioration amount; a deterioration amount storing block calculating and accumulating a difference in deterioration amount between a correction object pixel and a reference pixel by using the deterioration amount obtained through the conversion in the gradation value/deterioration amount converting block; a correction amount calculating block calculating a correction amount required for resolving the deterioration amount difference stored in the deterioration amount storing block based on an estimated deterioration amount within a correction period of time; and a deterioration amount difference correcting block correcting the gradation value of the corresponding pixel with the correction amount thus calculated. | 07-11-2013 |
20130221439 | SOI WAFER AND METHOD OF MANUFACTURING THE SAME - An SOI wafer according to the present invention includes a support substrate and an insulating layer formed on the support substrate, a predetermined cavity pattern being formed on one of main surfaces of the support substrate on which the insulating layer is provided, further includes an active semiconductor layer formed on the insulating layer with the cavity pattern being closed, the active semiconductor layer not being formed in an outer peripheral portion of the support substrate, and further includes a plurality of superposition mark patterns formed in the outer peripheral portion on the one of the main surfaces of the support substrate for specifying a position of the cavity pattern. | 08-29-2013 |
20130265214 | ELECTROLUMINESCENT DISPLAY PANEL AND ELECTRONIC APPARATUS - An electroluminescent display panel has pixel circuits for an active matrix driving system. At least one of the pixel circuits has a thin-film transistor in which a portion of a pattern of a metal wiring material above a channel layer of the thin-film transistor is disposed to shield the channel region of the thin-film transistor. | 10-10-2013 |
20130271435 | PIXEL CIRCUIT, ACTIVE MATRIX APPARATUS AND DISPLAY APPARATUS - A pixel circuit having a function of compensating for characteristic variation of an electro-optical element and threshold voltage variation of a transistor is formed from a reduced number of component elements. An input signal is sampled from a signal line so as to be held in a holding capacitor. The threshold voltage of the drive transistor is imparted to the holding capacitor in order to cancel an influence of the threshold voltage. | 10-17-2013 |
20130278648 | DISPLAY AND METHOD FOR MANUFACTURING DISPLAY - A display includes a pixel array part with pixels that each have at least one transistor whose conduction state is controlled by a drive signal input to a control terminal, and a scanner including a plurality of buffers that are formed of transistors. The buffers correspond to a pixel arrangement and output a drive signal to the control terminals of the transistors of the pixels. The transistors of the pixels and the transistors of the buffers are formed through irradiation with laser light that is moved for scanning in a predetermined direction and has a predetermined wavelength. The transistors in the buffers are formed in such a way that the channel length direction of the transistors is set parallel to the scan direction of the laser light. | 10-24-2013 |
20130292740 | SEMICONDUCTOR DEVICE - In a region located between a collector electrode and a semiconductor substrate, there are a portion where a hollow region is located and a portion where no hollow region is located. Between the collector electrode and the portion where no hollow region is located in the semiconductor substrate, a floating silicon layer electrically isolated by insulating films is formed. | 11-07-2013 |
20130314306 | DISPLAY DEVICE - A display device includes: a pixel array unit with pixel circuits disposed in matrix form, the pixel circuit including a driving transistor, an electro-optic element, a storage-capacitor, and a sampling transistor, with the electro-optic element emitting light by generating a driving current based on information stored in the storage-capacitor at the driving transistor to be applied to the electro-optic element; and a control unit, of which the output stage includes a buffer transistor, to output a pulse signal for driving the pixel array unit from the buffer transistor; wherein the pixel array unit and the control unit are formed with long laser beam irradiation to be scanned in the vertical direction; and with the control unit, buffer transistors for outputting a pulse signal for sampling to an input video signal to each signal line are arrayed in a column in the longitudinal direction of the laser beam irradiation. | 11-28-2013 |
20130321250 | PIXEL CIRCUIT, DISPLAY DEVICE, AND METHOD OF DRIVING PIXEL CIRCUIT - A pixel circuit, display device, and method of driving a pixel circuit enabling source-follower output with no deterioration of luminance even with a change of the current-voltage characteristic of the light emitting element along with elapse, enabling a source-follower circuit of n-channel transistors, and able to use an n-channel transistor as an EL drive transistor while using current anode-cathode electrodes, wherein a source of a TFT | 12-05-2013 |
20130321383 | PIXEL CIRCUIT, DISPLAY DEVICE, AND METHOD OF DRIVING PIXEL CIRCUIT - A pixel circuit, display device, and method of driving a pixel circuit enabling source-follower output with no deterioration of luminance even with a change of the current-voltage characteristic of the light emitting element along with elapse, enabling a source-follower circuit of n-channel transistors, and able to use an n-channel transistor as an EL drive transistor while using current anode-cathode electrodes, wherein a source of a TFT | 12-05-2013 |
20130328951 | DISPLAY APPARATUS AND DRIVE METHOD THEREFOR, AND ELECTRONIC EQUIPMENT - A drive section sequentially supplies respective scanning lines with a control signal and supplies respective signal lines with a video signal to carry out a correction operation for holding a voltage equivalent to a threshold voltage of a drive transistor in a holding capacitance, and subsequently performs a write operation for writing the video signal in the holding capacitance, and before the correction operation, the drive section switches potentials at the bias line and adds a coupling voltage to one current terminal of the drive transistor via an auxiliary capacitance to carry out a preparation operation for an initialization to set a potential difference between a control terminal and the one current terminal of the drive transistor larger than the threshold voltage. | 12-12-2013 |
20140035895 | DISPLAY DEVICE AND ELECTRONIC APPARATUS, AND DRIVING METHOD OF DISPLAY PANEL - A color display unit includes subpixels arranged in matrix form. Display pixels are formed from multiple subpixels, one for each of the display colors, grouped together across multiple subpixel rows. Drive units are formed including multiple rows of display pixels that are connected to a common power supply line. Common write scanning lines are provided, where the number of common write scanning lines per drive unit equals the number of rows of subpixels that are included in a display pixel. Each common write scanning line is connected to every pixel of at least one given color in its respective drive unit. The drive units are driven sequentially in a drive-unit-scanning direction. Within each individual drive unit, the write scanning lines thereof are scanned for the signal writing operation sequentially in a scanning direction opposite to the drive-unit-scanning direction. | 02-06-2014 |
20140035965 | DISPLAY PANEL, DISPLAY APPARATUS, AND ELECTRONIC SYSTEM - A color display unit includes pixels arranged in matrix form. Display pixel units are formed from multiple pixels, one of each of the display colors, grouped together across multiple rows. Drive units are formed by multiple rows of display pixel units that are connected to a common power supply line. Common write scanning lines are provided, where the number of common write scanning lines per drive unit equals the number of rows of pixels that are included in a display pixel unit. Each common write scanning line is connected to every pixel of at least one given color in its respective drive unit. Within a single drive unit, every pixel of a given color has a transistor whose layout orientation is the same as the layout orientation of a corresponding transistor in every other pixel of that given color. | 02-06-2014 |
20140035969 | DISPLAY APPARATUS, METHOD OF DRIVING A DISPLAY, AND ELECTRONIC DEVICE - In a display apparatus including a switching transistor, a correction voltage for eliminating an effect of a variation in a characteristic of a driving transistor is stored in a storage capacitor. The switching transistor is disposed between one current terminal of the driving transistor and a light emitting element. The switching transistor turns off during the non-light emission period thereby to electrically disconnect the light emitting element from the one current terminal of the driving transistor thereby preventing a leakage current from flowing through the light emitting element during the period in which the correction unit operates, and thus preventing the correction voltage from having an error due to the leakage current. | 02-06-2014 |
20140043218 | DISPLAY DEVICE AND ELECTRONIC EQUIPMENT - A display device is disclosed. The display device includes: a pixel array unit and a driving unit which drives the pixel array unit. The pixel array unit includes rows of first scanning lines and second scanning lines, columns of signals, pixels in a matrix state arranged at portions where the scanning lines and the signal lines cross each other and power supply lines and ground lines supplying power to respective pixels. The driving unit includes a first scanner performing line-sequential scanning to pixels by each row by supplying a first control signal to each first scanning line sequentially, a second scanner supplying a second control signal to each second scanning line sequentially so as to correspond to the line-sequential scanning and a signal selector supplying a video signal to rows of signal lines so as to correspond to the line-sequential scanning. | 02-13-2014 |
20140049530 | DISPLAY DEVICE AND ELECTRONIC APPARATUS - A transistor connected to a power source for driving a light-emitting element driving transistor and a transistor setting to a predetermined voltage a source voltage of the light-emitting element driving transistor are commonly controlled by a control signal that takes one of three levels. | 02-20-2014 |
20140078130 | PIXEL CIRCUIT AND DISPLAY APPARATUS - A pixel circuit performs a threshold voltage correcting function. A sampling transistor becomes conductive in response to a control signal supplied from a scan line and samples a video signal supplied from a signal line to a pixel capacitor during a horizontal scanning period. The pixel capacitor applies an input voltage to a gate of a drive transistor in response to the sampled video signal. The drive transistor supplies an output current in accordance with the input voltage to a light-emitting device. A threshold voltage correcting period is provided to be part of the horizontal scanning period, to detect the threshold voltage of the drive transistor, and to write the threshold voltage in the pixel capacitor. | 03-20-2014 |
20140125566 | ELECTROLUMINESCENT DISPLAY PANEL AND ELECTRONIC APPARATUS - An electroluminescent display panel has pixel circuits for an active matrix driving system. At least one of the pixel circuits has a thin-film transistor in which a portion of a pattern of a metal wiring material above a channel layer of the thin-film transistor is disposed to shield the channel region of the thin-film transistor. | 05-08-2014 |
20140132175 | LIGHT-EMITTING ELEMENT, DISPLAY DEVICE AND ELECTRONIC APPARATUS - A light-emitting element includes a light-emitting section and a driving circuit that drives the light-emitting section. The driving circuit includes at least (A) a drive transistor that is a p-channel field effect transistor, (B) an image-signal writing transistor that is a p-channel field effect transistor, (C) a light-emission control transistor that is a p-channel field effect transistor, and (D) a capacitor. Each of the drive transistor, image-signal writing transistor, and light-emission control transistor is provided in an n-type well formed in a p-type silicon semiconductor substrate. A first source/drain region of the drive transistor is electrically connected to the n-type well in which the drive transistor is formed. | 05-15-2014 |
20140132647 | DISPLAY APPARATUS, METHOD OF DRIVING DISPLAY APPARATUS, AND ELECTRONIC APPARATUS - Disclosed herein is a display apparatus including a pixel array and a driver, the pixel array including rows of scanning lines, rows of feeding lines, columns of signal lines, and a matrix of pixels disposed at the crossings of the scanning lines and the signal lines, the driver including a write scanner for supplying a control signal successively to the scanning lines, a power supply scanner for switching each of the feeding lines between a high potential, a low potential, and an intermediate potential between the high potential and the low potential, and a signal selector for supplying a video signal, which alternately switches between a signal potential and a reference potential, to each of the signal lines. | 05-15-2014 |
20140139106 | LIGHT-EMITTING ELEMENT AND DISPLAY DEVICE - A light-emitting element includes an emitting unit and a driving circuit configured to drive the emitting unit. The driving circuit includes a driving transistor, an image signal writing transistor, and a capacitor unit. The driving circuit is connected to a current supply line and a scanning line both extending in a first direction and connected to a data line extending in a second direction. The current supply line and the scanning line are formed on the first interlayer insulating layer and the first interlayer insulating layer, the current supply line, and the scanning line are covered with a second interlayer insulating layer. The data line is formed on the second interlayer insulating layer. A shield wall extending in the first direction is provided to the second interlayer insulating layer between one light-emitting element and a light-emitting element adjacent to the one light-emitting element in the second direction. | 05-22-2014 |
20140139569 | DRIVING METHOD OF ORGANIC ELECTROLUMINESCENCE EMISSION PART - A driving method of a display device having a driving transistor and a display element, one source/drain region of the driving transistor connected to a power supply part, the other source/drain region connected to an anode electrode provided in the display element, the method includes the steps of: setting a potential of the anode electrode by applying a predetermined intermediate voltage to the anode electrode so that a potential difference between the anode electrode of the display element and a cathode electrode at the other end of the display element does not exceed a threshold voltage of the display element; and then holding the driving transistor in OFF-state while a drive voltage is applied from the power supply part to one source/drain region of the driving transistor. | 05-22-2014 |
20140152723 | DISPLAY APPARATUS, DRIVING METHOD THEREOF, AND ELECTRONIC SYSTEM - A display apparatus includes: a pixel array section including a row of scanning lines, a column of signal lines, and pixels in a matrix, each of the pixels disposed at an intersection of both of the lines; and a drive section. The drive section performs line progressive scanning on the pixels. The pixel includes a light emitting device, a sampling transistor, a driving transistor, a switching transistor, and a holding capacitor. The sampling transistor samples a video signal in the holding capacitor, the driving transistor changes the device to a luminous state, the switching transistor becomes ON in advance of the sampling of the video signal to change the light emitting device to a non-luminous state, and the sampling transistor takes in the OFF voltage from the signal line to the driving transistor, thereby preventing a penetration current from flowing from the power source toward the fixed potential. | 06-05-2014 |
20140175447 | DISPLAY APPARATUS, METHOD OF DRIVING A DISPLAY, AND ELECTRONIC DEVICE - In a display apparatus including a switching transistor, a correction voltage for eliminating an effect of a variation in a characteristic of a driving transistor is stored in a storage capacitor. The switching transistor is disposed between one current terminal of the driving transistor and a light emitting element. The switching transistor turns off during the non-light emission period thereby to electrically disconnect the light emitting element from the one current terminal of the driving transistor thereby preventing a leakage current from flowing through the light emitting element during the period in which the correction unit operates, and thus preventing the correction voltage from having an error due to the leakage current. | 06-26-2014 |
20140217388 | DISPLAY DEVICE AND ELECTRONIC APPARATUS - A display device including: a plurality of sub-pixels arranged in a matrix, each including an electro-optical element having a structure in which a display functional layer is sandwiched between an upper electrode and a lower electrode; and an auxiliary interconnect contact in a pixel area in which the plurality of sub-pixels are arranged in a matrix and electrically connecting the upper electrode to an auxiliary interconnect, wherein m (m is an integer equal to or larger than two) sub-pixels adjacent to each other along an arrangement direction of the sub-pixels are regarded as one group, and n (n is a natural number smaller than m) auxiliary interconnect contacts are formed for each group. | 08-07-2014 |
20140218420 | DISPLAY APPARATUS, DRIVING METHOD FOR DISPLAY APPARATUS AND ELECTRONIC APPARATUS - Disclosed here in is a display apparatus, including, a pixel array section including a plurality of pixels arrayed in rows and columns and each including an electro-optical device, a pixel circuit provided commonly to each plural ones of the pixels in the same pixel row in the pixel array section and including a writing transistor for writing an image signal, a holding capacitor for holding the image signal written by the writing transistor and a driving transistor for driving the electro-optical devices of the plural pixels, and a plurality of scanning circuits configured to time-divisionally and selectively place the electro-optical devices included in the pixels into a forwardly biased state. | 08-07-2014 |
20140232758 | DISPLAY DEVICE AND ELECTRONIC PRODUCT HAVING LIGHT SENSORS IN PLURAL PIXEL REGIONS - A display device includes: a screen unit; a drive unit; a signal processing unit; and a selector, wherein the screen unit includes rows of scanning lines, columns of signal lines, matrix-state pixel circuits and a light sensor, the drive unit includes a scanner supplying a control signal to the scanning lines and a driver supplying a video signal to the signal lines, the screen unit is sectioned into plural regions each having plural pixel circuits, the pixel circuit emits light in accordance with the video signal, the light sensor is arranged with respect to each region and outputs a luminance signal in accordance with the light emission, the selector supplies plural luminance signals to the signal processing unit by switching the signals, and the signal processing unit corrects the video signal in accordance with the luminance signals and supplies the video signal to the driver. | 08-21-2014 |
20140247204 | PIXEL CIRCUIT, DISPLAY DEVICE, AND METHOD OF DRIVING PIXEL CIRCUIT - A pixel circuit, display device, and method of driving a pixel circuit enabling source-follower output with no deterioration of luminance even with a change of the current-voltage characteristic of the light emitting element along with elapse, enabling a source-follower circuit of n-channel transistors, and able to use an n-channel transistor as an EL drive transistor while using current anode-cathode electrodes, wherein a source of a TFT | 09-04-2014 |
20140253608 | DISPLAY DEVICE AND ELECTRONIC EQUIPMENT - A display device is disclosed. The display device includes: a pixel array unit and a driving unit which drives the pixel array unit. The pixel array unit includes rows of first scanning lines and second′ scanning lines, columns of signals, pixels in a matrix state arranged at portions where the scanning lines and the signal lines cross each other and power supply lines and ground lines supplying power to respective pixels. The driving unit includes a first scanner performing line-sequential scanning to pixels by each row by supplying a first control signal to each first scanning line sequentially, a second scanner supplying a second control signal to each second scanning line sequentially so as to correspond to the line-sequential scanning and a signal selector supplying a video signal to rows of signal lines so as to correspond to the line-sequential scanning. | 09-11-2014 |
20140264355 | DISPLAY DEVICE, DISPLAY DEVICE DRIVING METHOD, AND ELECTRONIC APPARATUS - A display device includes a pixel array portion and a driving portion for driving the pixel array portion. The pixel array portion includes row scanning lines, column signal lines, and pixels arranged in a matrix form at intersections of the scanning lines and the signal lines. The driving portion includes a write scanner for supplying a control signal to each of the scanning lines by sequentially scanning the scanning lines in each field and a signal selector for supplying a video signal to each of the signal lines in synchronization with the sequential scanning. Each pixel includes a drive transistor for supplying driving current to the light-emitting element in accordance with the video signal stored in a storage capacitor. | 09-18-2014 |
20140267465 | SIGNAL PROCESSING DEVICE, SIGNAL PROCESSING METHOD, PROGRAM, AND ELECTRONIC APPARATUS - Provided is a signal processing device including a signal synthesis unit that generates a first synthesis signal configured from an image signal to cause a first light emitting element used for displaying an image to emit light and a dummy pixel signal to cause a second light emitting element used for measuring brightness to emit light, a conversion unit that converts the generated first synthesis signal into a second synthesis signal to cause only the first light emitting element of the first light emitting element and the second light emitting element to emit light at identical brightness, regardless of a degradation degree of the first light emitting element, and a light emission control unit that causes the first light emitting element and the second light emitting element to emit light, on a basis of the second synthesis signal. | 09-18-2014 |
20140285406 | GRAY-SCALE VOLTAGE GENERATING CIRCUIT AND DISPLAY UNIT - A gray-scale voltage generating circuit includes: a ladder resistor circuit including a plurality of resistors connected in series to one another, and configured to output a plurality of gray-scale voltages with different voltage values from ends of the respective resistors; and a constant current source configured to be connected in series to the ladder resistor circuit, in which the constant current source includes a current source transistor configured to be connected in series to the ladder resistor circuit, and a voltage setting section configured to select one voltage from the plurality of voltages and set the selected voltage as a voltage determining a current that is to flow through the current source transistor. | 09-25-2014 |
20140285537 | GRAY-SCALE VOLTAGE GENERATING CIRCUIT AND DISPLAY UNIT - A gray-scale voltage generating circuit includes: a ladder resistor circuit including a plurality of resistors connected in series to one another, and configured to output a plurality of gray-scale voltages with different voltage values from ends of the respective resistors; and a constant current source configured to be connected in series to the ladder resistor circuit. | 09-25-2014 |
20140320472 | DISPLAY APPARATUS AND DRIVING METHOD THEREFOR - A display apparatus includes a pixel array section and a driving section configured to drive the pixel array section. The pixel array section includes a plurality of first scanning lines and a plurality of second scanning lines extending along rows, a plurality of signal lines extending along columns, a plurality of pixels arranged in a matrix at positions at which the first and second scanning lines and the signal lines intersect with each other, and a plurality of power supply lines and a plurality of ground lines configured to perform feeding to the pixels. The driving section includes a first scanner, a second scanner, and a signal selector. Each of the pixels includes a light emitting element, a sampling transistor, a drive transistor, a switching transistor, and a pixel capacitance. | 10-30-2014 |
20140327009 | DISPLAY AND METHOD FOR MANUFACTURING DISPLAY - A display includes a pixel array part with pixels that each have at least one transistor whose conduction state is controlled by a drive signal input to a control terminal, and a scanner including a plurality of buffers that are formed of transistors. The buffers correspond to a pixel arrangement and output a drive signal to the control terminals of the transistors of the pixels. The transistors of the pixels and the transistors of the buffers are formed through irradiation with laser light that is moved for scanning in a predetermined direction and has a predetermined wavelength. The transistors in the buffers are formed in such a way that the channel length direction of the transistors is set parallel to the scan direction of the laser light. | 11-06-2014 |
20140327665 | PIXEL CIRCUIT, DISPLAY DEVICE, AND METHOD OF DRIVING PIXEL CIRCUIT - A pixel circuit, display device, and method of driving a pixel circuit enabling source-follower output with no deterioration of luminance even with a change of the current-voltage characteristic of the light emitting element along with elapse, enabling a source-follower circuit of n-channel transistors, and able to use an n-channel transistor as an EL drive transistor while using current anode-cathode electrodes, wherein a source of a TFT | 11-06-2014 |
20140333212 | PIXEL CIRCUIT AND DISPLAY DEVICE - A pixel circuit able to prevent a spread of the terminal voltages of drive transistors inside a panel and in turn able to reliably prevent deterioration of uniformity, wherein a source of a TFT serving as a drive transistor is connected to an anode of a light emitting element, a drain is connected to a power source potential, a capacitor is connected between a gate and source of the TFT, and a source potential of the TFT is connected to a fixed potential through a TFT serving as a switch transistor and wherein pixel circuit lines are connected by an upper line and bottom line and are arranged in parallel with pixel circuit power source voltage lines so as not to have intersecting parts. | 11-13-2014 |
20140333604 | DISPLAY UNIT, DISPLAY PANEL, AND METHOD OF DRIVING THE SAME, AND ELECTRONIC APPARATUS - A display unit ( | 11-13-2014 |
20140340288 | DISPLAY DEVICE - A display device includes: a pixel array unit with pixel circuits disposed in matrix form, the pixel circuit including a driving transistor, an electro-optic element, a storage-capacitor, and a sampling transistor, with the electro-optic element emitting light by generating a driving current based on information stored in the storage-capacitor at the driving transistor to be applied to the electro-optic element; and a control unit, of which the output stage includes a buffer transistor, to output a pulse signal for driving the pixel array unit from the buffer transistor; wherein the pixel array unit and the control unit are formed with long laser beam irradiation to be scanned in the vertical direction; and with the control unit, buffer transistors for outputting a pulse signal for sampling to an input video signal to each signal line are arrayed in a column in the longitudinal direction of the laser beam irradiation. | 11-20-2014 |
20140340289 | DISPLAY DEVICE AND ELECTRONIC APPARATUS - A display device including: a plurality of sub-pixels arranged in a matrix, each including an electro-optical element having a structure in which a display functional layer is sandwiched between an upper electrode and a lower electrode; and an auxiliary interconnect contact in a pixel area in which the plurality of sub-pixels are arranged in a matrix and electrically connecting the upper electrode to an auxiliary interconnect, wherein m (m is an integer equal to or larger than two) sub-pixels adjacent to each other along an arrangement direction of the sub-pixels are regarded as one group, and n (n is a natural number smaller than m) auxiliary interconnect contacts are formed for each group. | 11-20-2014 |
20140347337 | DISPLAY DEVICE AND ELECTRONIC APPARATUS - A transistor connected to a power source for driving a light-emitting element driving transistor and a transistor setting to a predetermined voltage a source voltage of the light-emitting element driving transistor are commonly controlled by a control signal that takes one of three levels. | 11-27-2014 |
20140347338 | PIXEL CIRCUIT, DISPLAY AND DRIVING METHOD THEREOF - The invention provides a pixel circuit that can cancel the influence of the mobility of a drive transistor. A drive transistor supplies a light-emitting element with an output current dependent upon an input voltage. The light-emitting element emits light with a luminance dependent upon a video signal in response to the output current supplied from the drive transistor. The pixel circuit includes a correction unit that corrects the input voltage held by a capacitive part in order to cancel the dependence of the output current on the carrier mobility. | 11-27-2014 |
20140361962 | DISPLAY DEVICE - Any one of a write scanning line, a power source supply line, and a video signal line is structured as a subsidiary wiring disposed in the same layer as that having a lower electrode disposed therein. The subsidiary wiring is used in the power source supply line through which a power source drive pulse to be pulse-driven is transmitted, or other wirings (such as the write scanning line and the video signal line). | 12-11-2014 |
20140362063 | PIXEL CIRCUIT, DISPLAY DEVICE, DRIVING METHOD OF PIXEL CIRCUIT, AND DRIVING METHOD OF DISPLAY DEVICE - A pixel circuit includes a drive transistor that has a gate connected to an input node and a source connected to an output node. The drive transistor supplies a driving current to an electrooptic element via the output node. A sampling transistor is connected between the input node and a signal line and samples an input signal from the signal line, which is retained in a retaining capacitance connected to the input node. The magnitude of the driving current is based on a value of the retained signal. The pixel circuit further includes a compensating circuit which detects a decrease in the driving current attendant on a secular change of the drive transistor from a side of the output node and feeds back a result of the detection to a side of the input node to compensate for the decrease. | 12-11-2014 |
20150015565 | DISPLAY DEVICE - A display device includes: a pixel array unit with pixel circuits disposed in matrix form, the pixel circuit including a driving transistor, an electro-optic element, a storage capacitor, and a sampling transistor, with the electro-optic element emitting light by generating a driving current based on information stored in the storage capacitor at the driving transistor to be applied to the electro-optic element; and a control unit, of which the output stage includes a buffer transistor, to output a pulse signal for driving the pixel array unit from the buffer transistor; wherein the pixel array unit and the control unit are formed with long laser beam irradiation to be scanned in the vertical direction or horizontal direction; and wherein with the control unit, the size of the buffer transistor is equal to or greater than the pixel pitch in the scanning direction of the laser beam. | 01-15-2015 |
20150031208 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A method of manufacturing a semiconductor device, includes the steps of forming a top surface nitride film on a top surface of a substrate and a bottom surface nitride film on a bottom surface of the substrate, forming a protective film on the top surface nitride film, removing the bottom surface nitride film by wet etching while the top surface nitride film is being protected by the protective film, removing the protective film after the removing of the bottom surface nitride film, patterning the top surface nitride film so as to form an opening in the top surface nitride film, and forming a second oxide film on the bottom surface of the substrate while forming a first oxide film on a surface portion of the substrate which is exposed by the opening. | 01-29-2015 |
20150042635 | DISPLAY DEVICE, METHOD FOR DRIVING DISPLAY DEVICE, AND ELECTRONIC APPARATUS - Provided is a display device including a pixel array unit that is made by arranging a drive transistor to drive a light emitting unit, a sampling transistor to sample a signal voltage, and a pixel circuit having a storage capacitor to store the signal voltage which is written by sampling with the sampling transistor, and a drive unit that makes a gate node and a source node of the drive transistor be in a floating state up to performing writing of the signal voltage with the sampling transistor, after writing an initialization voltage in the gate node when the source node of the drive transistor is in a non-floating state. | 02-12-2015 |