Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Junichi Wada

Junichi Wada, Kanagawa JP

Patent application numberDescriptionPublished
20080261398Semiconductor device having oxidized metal film and manufacture method of the same - A method for manufacturing a semiconductor device includes heating a substrate having an insulation film thereon to a first substrate temperature so that oxidizing species are emitted from the insulating film, the insulating film having a recessed portion formed in a surface thereof, forming a metal film on the insulating film at a second substrate temperature lower than the first substrate temperature, and oxidizing at least part of the metal film with oxidizing species remaining in the insulating film.10-23-2008
20090020883SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING SEMICONDUCTOR DEVICE - A semiconductor device includes a first contact plug arranged above a semiconductor substrate and using aluminum (Al) as a material; a second contact plug arranged on and in contact with the first contact plug and using a refractory metal material; a first dielectric film arranged on a flank side of the first and second contact plugs; a wire arranged above the second contact plug and using copper (Cu) as a material; a second dielectric film arranged on a flank side of the wire; and a barrier film arranged at least between the wire and the first dielectric film and between the wire and the second dielectric film.01-22-2009
20090236746SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING SEMICONDUCTOR DEVICE - A semiconductor device includes a contact plug electrically connected to a semiconductor substrate; a first barrier metal film with a columnar crystal structure arranged in contact with the semiconductor substrate at least on a bottom surface side of the contact plug; an amorphous film made of a material of the first barrier metal film arranged in contact with the first barrier metal film at least on the bottom surface side of the contact plug; a second barrier metal film made of a material identical to that of the first barrier metal film and having a columnar crystal structure, at least a portion of which is arranged in contact with the amorphous film on the bottom surface side and a side surface side of the contact plug; and a dielectric film arranged on the side surface side of the contact plug.09-24-2009
20100216305METHOD FOR FABRICATING SEMICONDUCTOR DEVICE - A method for fabricating a semiconductor device, includes forming a dielectric film above a substrate; forming an opening in the dielectric film; forming a ruthenium (Ru) film at least on a bottom surface of the opening; and filling in the opening with a tungsten (W) film in which the Ru film is formed, according to a chemical vapor deposition (CVD) method by hydrogen (H08-26-2010
20110031622METHOD FOR FABRICATING SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE - A method for fabricating a semiconductor device according to an embodiment includes: forming a nickel (Ni) film containing phosphorus (P) elements on a substrate having at least one of a diffusion layer formed by using silicon (Si) and a gate electrode formed by using Si exposed on a surface thereof; and forming a nickel silicide (NiSi) film containing P elements on the substrate from the Ni film containing the P elements and Si in at least one of the diffusion layer and the gate electrode.02-10-2011
20110037043NONVOLATILE MEMORY DEVICE AND METHOD OF MANUFACTURING THE SAME - According to one embodiment, a nonvolatile memory device includes a first wire, a second wire and a nonvolatile memory cell. The first wire is formed to extend in a first direction, and the second wire is formed at height different from height of the first wire and to extend in a second direction. The nonvolatile memory cell is arranged to be held between the first wire and the second wire in a poison where the first wire and the second wire cross. The nonvolatile memory cell includes a nonvolatile storage layer and a current limiting resistance layer connected in series to the nonvolatile storage layer and having resistance of 1 kilo-ohm to 1 mega-ohm.02-17-2011
20120152168SEMICONDUCTOR DEVICE HAVING OXIDIZED METAL FILM AND MANUFACTURE METHOD OF THE SAME - A method for manufacturing a semiconductor device includes heating a substrate having an insulation film thereon to a first substrate temperature so that oxidizing species are emitted from the insulating film, the insulating film having a recessed portion formed in a surface thereof, forming a metal film on the insulating film at a second substrate temperature lower than the first substrate temperature, and oxidizing at least part of the metal film with oxidizing species remaining in the insulating film.06-21-2012

Patent applications by Junichi Wada, Kanagawa JP

Junichi Wada, Kanagawa-Ken JP

Patent application numberDescriptionPublished
20100314602NONVOLATILE MEMORY DEVICE AND METHOD FOR MANUFACTURING SAME - A nonvolatile memory device includes: a first conductive layer; a second conductive layer; a first resistance change layer provided between the first conductive layer and the second conductive layer and having an electrical resistance changing with at least one of an applied electric field and a passed current; and a first lateral layer provided on a lateral surface of the first resistance change layer and having an oxygen concentration higher than an oxygen concentration in the first resistance change layer12-16-2010
20120292587NONVOLATILE MEMORY DEVICE - According to one embodiment, a nonvolatile memory device includes a memory cell. The memory cell includes a stacked film structure. The stacked film structure is capable of maintaining a first state or a second state. The first state includes a lower electrode film, a first memory element film provided on the lower electrode film and containing a first oxide and an upper electrode film provided on the first memory element film. The second state includes the lower electrode film, the first memory element film provided on the lower electrode film, a second memory element film provided on the first memory element film and containing a second oxide and the upper electrode film provided on the second memory element film.11-22-2012
20130240822NONVOLATILE MEMORY DEVICE AND METHOD FOR MANUFACTURING THE SAME - A nonvolatile memory device includes a first film layer formed on a substrate, and a second film layer formed on the first film layer. The second film layer comprises a first oxide material having a first oxygen content, and a second oxide material disposed laterally of the first oxide material and having a second oxygen content that is greater than the first oxygen content. The memory device also includes a third film layer formed on the second film layer, and the third film layer is disposed on the first oxide material and exposes portions of the second oxide material.09-19-2013
20140021430NONVOLATILE MEMORY DEVICE AND METHOD FOR MANUFACTURING SAME - A nonvolatile memory device includes: a first conductive layer; a second conductive layer; a first resistance change layer provided between the first conductive layer and the second conductive layer and having an electrical resistance changing with at least one of an applied electric field and a passed current; and a first lateral layer provided on a lateral surface of the first resistance change layer and having an oxygen concentration higher than an oxygen concentration in the first resistance change layer01-23-2014

Patent applications by Junichi Wada, Kanagawa-Ken JP

Junichi Wada, Yokohama-Shi JP

Patent application numberDescriptionPublished
20100115479Method for generating pattern, method for manufacturing semiconductor device, semiconductor device, and computer program - A method for generating a pattern includes reading out an interconnect layout and a hole layout, the interconnect layout prescribing interconnect patterns, the hole layout prescribing hole patterns configured to connect to the interconnect patterns; extracting one of the hole patterns to be connected within the same interconnect layer level to one of the interconnect patterns in a pattern processing area; extracting a first processing area including the extracted hole pattern; calculating a first pattern density of the interconnect patterns included in the first processing area; and generating first additional patterns in the first processing area based on the first pattern density.05-06-2010
20120069625RESISTANCE CHANGE ELEMENT AND RESISTANCE CHANGE MEMORY - According to one embodiment, a resistance change element includes a first film provided on a first electrode side, a second film provided on a second electrode side, a barrier film sandwiched between the first film and the second film, and metal impurities added in the first or second film, the metal impurities migrating between the first and second films bi-directionally according to a direction of a first electric field generated between the first and second electrodes. The resistance change element has a first resistance state when the metal impurities are present in the first film, and the resistance change element has a second resistance state different from the first resistance state when the metal impurities are present in the second film.03-22-2012
20120306081SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD - According to one embodiment, a semiconductor device includes an interconnect provided on a first interlayer insulating film covering a semiconductor substrate in which an element is formed, a cap layer provided on the upper surface of the interconnect, and a barrier film provided between the interconnect and a second interlayer insulating film covering the interconnect. The interconnect includes a high-melting-point conductive layer, and the width of the interconnect is smaller than the width of the cap layer. The barrier film includes a compound of a contained element in the high-melting-point conductive layer.12-06-2012

Patent applications by Junichi Wada, Yokohama-Shi JP

Junichi Wada, Chita-Gun JP

Patent application numberDescriptionPublished
20090009275Ignition coil - An ignition coil includes a primary coil (01-08-2009
20090108972IGNITION COIL AND METHOD FOR MANUFACTURING THE SAME - An ignition coil includes a coil body, a primary resin molded body, and a secondary resin molded body. The coil body has a primary coil and a secondary coil. The primary resin molded body has the coil body therein in a fixed relation, and the primary resin molded body has a plurality of exposed side portions that hold the coil body therebetween. The secondary resin molded body is molded to have the coil body and the primary resin molded body embedded therein. The secondary resin molded body is configured to allow the plurality of exposed side portions of the primary resin molded body to be exposed to an exterior of the secondary resin molded body.04-30-2009
20160064903SPARK PLUG FOR INTERNAL COMBUSTION ENGINE AND METHOD OF MANUFACTURING SPARK PLUG - A spark plug includes a tubular housing, a tubular insulator retained in the housing, a center electrode secured in the insulator with a distal end portion of the center electrode protruding outside the insulator, and an annular ground electrode fixed to a distal end of the housing. The housing has, at the distal end thereof, a small-inner diameter portion that has a smaller inner diameter than other portions of the housing. The annular ground electrode is arranged on a distal end surface of the small-inner diameter portion of the housing so that an inner circumferential surface of the ground electrode faces an outer circumferential surface of the distal end portion of the center electrode through a spark gap formed therebetween. The outer diameter of the ground electrode is less than the outer diameter of the distal end surface of the small-inner diameter portion of the housing.03-03-2016

Patent applications by Junichi Wada, Chita-Gun JP

Junichi Wada, Miyagi JP

Patent application numberDescriptionPublished
20130243680GROUP 13 NITRIDE CRYSTAL AND GROUP 13 NITRIDE CRYSTAL SUBSTRATE - A group 13 nitride crystal has a hexagonal crystal structure containing a nitrogen atom and at least one type of metal atom selected from the group consisting of B, Al, Ga, In, and Tl. The group 13 nitride crystal has a basal plane dislocation in a plurality of directions. Dislocation density of the basal plane dislocation is higher than dislocation density of a threading dislocation of a c-plane.09-19-2013
20140077218GROUP 13 NITRIDE CRYSTAL, GROUP 13 NITRIDE CRYSTAL SUBSTRATE, AND METHOD OF MANUFACTURING GROUP 13 NITRIDE CRYSTAL - A group 13 nitride crystal having a hexagonal crystal structure contains at least a nitrogen atom and at least one metal atom selected from a group consisting of B, Al, Ga, In and Tl. Dislocation density of basal plane dislocations in a cross section parallel to a c-axis is 1003-20-2014
20140271439GROUP 13 NITRIDE CRYSTAL AND METHOD FOR PRODUCTION OF GROUP 13 NITRIDE CRYSTAL - A group 13 nitride crystal of hexagonal crystal including at least one or more metal atom selected from the group consisting of B, Al, Ga, In, and Tl, and a nitrogen atom, the group 13 nitride crystal comprises: a first region provided on the inner side of a cross section crossing a c-axis; a third region provided on an outermost side of the cross section; a second region provided between the first region and the third region at the cross section and having characteristics different from characteristics of the first region and the third region, wherein a shape formed by a boundary between the first region and the second region at the cross section is non-hexagonal.09-18-2014

Junichi Wada, Yokkaichi-Shi JP

Patent application numberDescriptionPublished
20140070289FERROELECTRIC MEMORY AND MANUFACTURING METHOD THEREOF - According to one embodiment, a ferroelectric memory includes a gate insulation film formed on a semiconductor substrate, a ferroelectric film formed on the gate insulation film, and a control electrode formed on the ferroelectric film. The ferroelectric film is a film containing a metal, which is hafnium or zirconium, and oxygen, and contains an element other than the metal at a concentration lower than a concentration of the metal.03-13-2014
20140070290FERROELECTRIC MEMORY AND MANUFACTURING METHOD OF THE SAME - According to one embodiment, a ferroelectric memory includes a semiconductor layer, an interfacial insulating film formed on the semiconductor layer, a ferroelectric film formed on the interfacial insulating film, and a gate electrode formed on the ferroelectric film, wherein the ferroelectric film is a film which includes a metal that is hafnium (Hf) or zirconium (Zr) and oxygen as the main components and to which an element selected from the group consisting of silicon (Si), magnesium (Mg), aluminum (Al).03-13-2014

Junichi Wada, Mie-Ken JP

Patent application numberDescriptionPublished
20130248808RESISTANCE CHANGE ELEMENT AND NONVOLATILE MEMORY DEVICE - A resistance change element includes a first conductive layer, a second conductive layer, and a memory layer. The memory layer is provided between the first conductive layer and the second conductive layer. The memory layer is capable of reversibly transitioning between a first state and a second state due to at least one of a voltage and a current supplied via the first conductive layer and the second conductive layer. A resistance of the second state is higher than a resistance of the first state. The memory layer includes niobium oxide. One of a (100) plane, a (010) plane, and a (110) plane of the memory layer is oriented in a stacking direction from the first conductive layer toward the second conductive layer.09-26-2013
20140284537MEMORY ELEMENT - According one embodiment, a memory element includes: a first electrode layer; a second electrode layer including a metal element; and a memory layer provided between the first electrode layer and the second electrode layer, the memory layer including an oxide layer, and a platinum group metal being dispersed in at least part of the oxide layer, an absolute value of a standard Gibbs free energy of formation of an oxide of an element included in the oxide layer being larger than an absolute value of a standard Gibbs free energy of formation when the metal element changes to an oxide.09-25-2014
20140284546MEMORY ELEMENT - According to one embodiment, a memory element includes: a first electrode layer; a second electrode layer; and a memory layer provided between the first electrode layer and the second electrode layer, and the memory layer including a plurality of first oxide layers in a second oxide layer, a resistivity of each of the plurality of first oxide layers being higher than a resistivity of the second oxide layer.09-25-2014

Junichi Wada, Yokkaichi JP

Patent application numberDescriptionPublished
20140374690SEMICONDUCTOR ELEMENT AND SEMICONDUCTOR DEVICE - A semiconductor element includes a first electrode having at least one convex feature, a second electrode having a concave feature opposed to the convex feature, and a variable resistance layer including an element whose absolute value of standard reaction Gibbs energy for forming oxide is larger than the corresponding value of an element included in the first electrode, and being disposed between the convex feature and the concave feature or on the outer circumference of the convex feature of the first electrode.12-25-2014
20160064405METHOD FOR FORMING INSULATOR FILM ON METAL FILM - According to one embodiment, forming a metal film on an underlying layer, and depositing an oxide film on the metal film using plasma of a mixed gas induced above the metal film. The mixed gas includes a gaseous material source, a gaseous oxidant, and a gaseous reductant.03-03-2016

Junichi Wada, Kyoto JP

Patent application numberDescriptionPublished
20160109867SIMULATION METHOD, RECORDING MEDIUM WHEREIN SIMULATION PROGRAM IS STORED, SIMULATION DEVICE, AND SYSTEM - A simulation method run on a computer simulating the characteristics of a real controlled device including a heating apparatus that changes a heating value in accordance with a first manipulated value, includes creating a controlled-device model representing the real controlled device where a first manipulated value is an input and a process value for the real controlled device is an output, acquiring a first time-related characteristic as input to the controlled-device model, and calculating a second time-related characteristic from the output from the controlled device model with respect to the input of the first time-related characteristic. The controlled-device model includes a heating component corresponding to the heating apparatus for increasing the process value in accordance with the size of a first manipulated value.04-21-2016
Website © 2016 Advameg, Inc.