Patent application number | Description | Published |
20110308967 | Pump Cavitation Device - A sacrificial body mitigates cavitation damage to components within a pump. The sacrificial body is mounted in the pump so that flowing fluid passes over the sacrificial body, which causes the sacrificial body to shed electrons into the flowing fluid in the vicinity of the cavitation. The excess electrons tend to suppress hydrogen ions from releasing, which can mitigate cavitation. The sacrificial body is formed of a material having less resistance to corrosion due to the flowing fluid than the components of the pump. Needles are attached to the sacrificial body for immersion in the flowing fluid to facilitate the release of the electrons for the sacrificial body. | 12-22-2011 |
20120152111 | PLUNGER PACKING WITH WEDGE SEAL HAVING EXTRUSION RECESS - A seal assembly is disposed in an annular recess in a cylinder chamber between a pump cavity and a pump exterior. The seal assembly includes a main seal and a back-up seal and seals to a pump plunger disposed within the cylinder chamber. The back-up seal includes an extrusion recess extending from a surface of the back-up seal adjacent the main seal along an inner or an outer diameter of the back-up seal. During pumping operations the plunger strokes through the cylinder chamber causing the main seal to extrude into the extrusion recess to form a seal between the plunger and the cylinder chamber. | 06-21-2012 |
20130020521 | PRECONFIGURED SEAL FOR VALVE ASSEMBLIES - A valve assembly is disclosed herein having a valve member and a valve seat body. The valve member is reciprocatingly movable into and out of engagement with the valve seat body. The assembly further includes at least one deformable seal positioned to be at the situs of engagement of the valve member with the valve seat body. The at least one seal is preconfigured with a recess facing the situs to form a pocket to trap fluid therein as the valve member approaches the engagement, which reduces the velocity of the valve member moving toward the engagement and reduces the impact force of the valve member on the valve seat body. Furthermore, the fluid disposed within the pocket also reduces the axial load on the valve member and valve seat body. | 01-24-2013 |
20130202458 | PUMP FLUID CYLINDER INCLUDING LOAD TRANSFER SHOULDER AND VALVE SEAT FOR SAME - According to one aspect, a pump assembly includes a fluid cylinder, and the fluid cylinder includes a fluid passage that defines a tapered internal shoulder of the fluid cylinder. The tapered internal shoulder defines a first frusto-conical surface. A valve controls flow of fluid through the fluid passage. The valve includes a valve seat, which includes a seat body disposed in the fluid passage, and a bore formed through the seat body and through which fluid flows. The seat body includes inlet and outlet end portions, wherein the fluid flows into the bore at the inlet end portion and flows out of the bore at the outlet end portion. The inlet end portion of the seat body defines a second frusto-conical surface. In one embodiment, the second frusto-conical surface engages the first frusto-conical surface to distribute and transfer loading. | 08-08-2013 |
20140130887 | MANIFOLD AND METHODS OF MANUFACTURING SAME - According to one aspect, a manifold defines an internal region and a first inside surface. A fluid liner is permanently bonded to the first inside surface, and dynamically responds to pressure fluctuations within the internal region during fluid flow therethrough while the permanent bond is maintained. According to another aspect, an end cap is connected to the elongated member and defines a second inside surface. The fluid liner is engaged with each of first and second inside surfaces, and defines a third inside surface. A first thickness of the fluid liner is defined between the first and third inside surfaces, a second thickness of the fluid liner is defined between the second and third inside surfaces, and the second thickness is greater than the first thickness. According to another aspect, a plug opening is formed through the fluid liner, and a liner plug extends within the plug opening. | 05-15-2014 |
20150377318 | PUMP DRIVETRAIN DAMPER SYSTEM AND CONTROL SYSTEMS AND METHODS FOR SAME - In one aspect, there is provided a damper control system for a reciprocating pump assembly according to which control signals are sent to electromagnets. In another aspect, there is provided a method of dampening vibrations in a pump drivetrain according to which a beginning of torque variation is detected and at least a portion of the torque variation is negated. In another aspect, signals or data associated with pump characteristics are received from sensors, torque characteristics and damper response voltages per degree of crank angle are calculated, and control signals are sent to electromagnets. In another aspect, a damper system includes a fluid chamber configured to receive a magnetorheological fluid; a flywheel disposed at least partially within the fluid chamber and adapted to be operably coupled to a fluid pump crankshaft; and a magnetic device proximate the flywheel. The magnetic device applies a variable drag force to the flywheel. | 12-31-2015 |