Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


John J. Pekarik

John J. Pekarik, Underhill, VT US

Patent application numberDescriptionPublished
20090250772FIELD EFFECT TRANSISTOR AND METHOD OF MANUFACTURE - A semiconductor structure and method of manufacture and, more particularly, a field effect transistor that has a body contact and method of manufacturing the same is provided. The structure includes a device having a raised source region of a first conductivity type and an active region below the raised source region extending to a body of the device. The active region has a second conductivity type different than the first conductivity type. A contact region is in electric contact with the active region. The method includes forming a raised source region over an active region of a device and forming a contact region of a same conductivity type as the active region, wherein the active region forms a contact body between the contact region and a body of the device.10-08-2009
20090302355STRUCTURE, STRUCTURE AND METHOD FOR FABRICATION JFET IN CMOS - A design structure, and more particularly, to a design structure for manufacturing a JFET in SOI, a JFET and methods of manufacturing the JFET are provided. The JFET includes a gate poly formed directly on an SOI layer and a gate oxide layer interposed between outer edges of the gate poly and the SOI layer.12-10-2009
20110291171VARACTOR - A variable capacitance device including a plurality of FETs, the sources and drains of each FET being coupled to a first terminal, the gates of each FET being coupled to a second terminal, the capacitance of said device between said first and second terminals varying as a function of the voltage across said terminals, the device further including a biasing providing a respective backgate bias voltage to each the FETs setting a respective gate threshold voltage thereof. The aggregate V-C characteristic can be tuned as desired, either at design time or dynamically. The greater the number of FETs forming the varactor, the greater the number of possible Vt values that can be individually set, so that arbitrary V-C characteristics can be more closely approximated.12-01-2011
20120146104STRUCTURE AND LAYOUT OF A FET PRIME CELL - Method of making a semiconductor device that includes forming a source and a drain in a substrate, forming a gate on the substrate between the source and drain, forming a substrate contact in electrical contact with the source, and forming an electrical contact to the source, drain and gate, and the substrate.06-14-2012
20130119442JUNCTION FIELD-EFFECT TRANSISTOR WITH RAISED SOURCE AND DRAIN REGIONS FORMED BY SELECTIVE EPITAXY - Junction field-effect transistors, methods for fabricating junction field-effect transistors, and design structures for a junction field-effect transistor. A source and a drain of the junction field-effect transistor are comprised of a semiconductor material grown by selective epitaxy and in direct contact with a top surface of a semiconductor layer. A gate is formed that is aligned with a channel laterally disposed in the semiconductor layer between the source and the drain. The source, the drain, and the semiconductor layer are each comprised of a second semiconductor material having an opposite conductivity type from a first semiconductor material comprising the gate.05-16-2013
20130119508BIPOLAR JUNCTION TRANSISTOR WITH MULTIPLE EMITTER FINGERS - Methods for fabricating bipolar junction transistors, bipolar junction transistors, and design structures for a bipolar junction transistor. The bipolar junction transistor may include a plurality of emitters that are arranged in distinct emitter fingers. A silicide layer is formed that covers an extrinsic base layer of the bipolar junction transistor and that fills the gaps between adjacent emitters. Non-conductive spacers on the emitter sidewalls electrically insulate the emitters from the silicide layer. The emitters extend through the extrinsic base layer and the silicide layer to contact the intrinsic base layer. The emitters may be formed using sacrificial emitter pedestals in a replacement-type process.05-16-2013
20130134483BIPOLAR TRANSISTOR WITH A RAISED COLLECTOR PEDASTAL FOR REDUCED CAPACITANCE AND A METHOD OF FORMING THE TRANSISTOR - Disclosed are a transistor and a method of forming the transistor with a raised collector pedestal in reduced dimension for reduced base-collector junction capacitance. The raised collector pedestal is on the top surface of a substrate, extends vertically through dielectric layer(s), is un-doped or low-doped, is aligned above a sub-collector region contained within the substrate and is narrower than that sub-collector region. An intrinsic base layer is above the raised collector pedestal and the dielectric layer(s). An extrinsic base layer is above the intrinsic base layer. Thus, the space between the extrinsic base layer and the sub-collector region is increased. This increased space is filled by dielectric material and the electrical connection between the intrinsic base layer and the sub-collector region is provided by the relatively narrow, un-doped or low-doped, raised collector pedestal. Consequently, base-collector junction capacitance is reduced and, consequently, the maximum oscillation frequency is increased.05-30-2013
20130168822SELF ALIGNED STRUCTURES AND DESIGN STRUCTURE THEREOF - Vertical bipolar junction structures, methods of manufacture and design structures. The method includes forming one or more sacrificial structures for a bipolar junction transistor (BJT) in a first region of a chip. The method includes forming a mask over the one or more sacrificial structures. The method further includes etching an opening in the mask, aligned with the one or more sacrificial structures. The method includes forming a trench through the opening and extending into diffusion regions below the one or more sacrificial structures. The method includes forming a base region of the BJT by depositing an epitaxial material in the trench, in contact with the diffusion regions. The method includes forming an emitter contact by depositing a second epitaxial material on the base region within the trench. The epitaxial material for the emitter region is of an opposite dopant type than the epitaxial material of the base region.07-04-2013
20140035064SEMICONDUCTOR STRUCTURES AND METHODS OF MANUFACTURE - Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.02-06-2014
20140084420METHOD TO BRIDGE EXTRINSIC AND INTRINSIC BASE BY SELECTIVE EPITAXY IN BICMOS TECHNOLOGY - A method of forming a heterojunction bipolar transistor. The method includes providing a structure comprising at least an intrinsic base region and an emitter pedestal region. A stack is formed on the intrinsic base region. The stack comprises a polysilicon layer and a top sacrificial oxide layer. A trench is formed in the structure. The trench circumscribes the intrinsic base region and the stack. An extrinsic base is formed at two regions around the stack. The extrinsic base is formed by a selective epitaxial growth process to create a bridge over the trench. The bridge connects the two regions. An opening is provided in the stack. The opening exposes a portion of the intrinsic base region. An emitter is formed in the opening.03-27-2014
20140151852BIPOLAR JUNCTION TRANSISTORS WITH REDUCED BASE-COLLECTOR JUNCTION CAPACITANCE - Fabrication methods, device structures, and design structures for a bipolar junction transistor. The device structure includes a collector region, an intrinsic base formed on the collector region, an emitter coupled with the intrinsic base and separated from the collector by the intrinsic base, and an isolation region extending through the intrinsic base to the collector region. The isolation region is formed with a first section having first sidewalls that extend through the intrinsic base and a second section with second sidewalls that extend into the collector region. The second sidewalls are inclined relative to the first sidewalls. The isolation region is positioned in a trench that is formed with first and second etching process in which the latter etches different crystallographic directions of a single-crystal semiconductor material at different etch rates.06-05-2014
20140353725SEMICONDUCTOR DEVICE AND METHOD OF FORMING THE DEVICE BY FORMING MONOCRYSTALLINE SEMICONDUCTOR LAYERS ON A DIELECTRIC LAYER OVER ISOLATION REGIONS - Disclosed are devices and methods of forming the devices wherein pair(s) of first openings are formed through a dielectric layer and a first semiconductor layer into a substrate and, within the substrate, the first openings of each pair are expanded laterally and merged to form a corresponding trench. Dielectric material is deposited, filling the upper portions of the first openings and creating trench isolation region(s). A second semiconductor layer is deposited and second opening(s) are formed through the second semiconductor and dielectric layers, exposing monocrystalline portion(s) of the first semiconductor layer between the each pair of first openings. A third semiconductor layer is epitaxially deposited with a polycrystalline section on the second semiconductor layer and monocrystalline section(s) on the exposed monocrystalline portion(s) of the first semiconductor layer. A crystallization anneal is performed and a device (e.g., a bipolar device) is formed incorporating the resulting monocrystalline second and third semiconductor layers.12-04-2014
20150014747METHOD TO BRIDGE EXTRINSIC AND INTRINSIC BASE BY SELECTIVE EPITAXY IN BICMOS TECHNOLOGY - A method of forming a heterojunction bipolar transistor. The method includes providing a structure comprising at least an intrinsic base region and an emitter pedestal region. A stack is formed on the intrinsic base region. The stack comprises a polysilicon layer and a top sacrificial oxide layer. A trench is formed in the structure. The trench circumscribes the intrinsic base region and the stack. An extrinsic base is formed at two regions around the stack. The extrinsic base is formed by a selective epitaxial growth process to create a bridge over the trench. The bridge connects the two regions. An opening is provided in the stack. The opening exposes a portion of the intrinsic base region. An emitter is formed in the opening.01-15-2015
20150041895SEMICONDUCTOR STRUCTURES AND METHODS OF MANUFACTURE - Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.02-12-2015
20150041896FIELD EFFECT TRANSISTOR AND METHOD OF MANUFACTURE - A semiconductor structure and method of manufacture and, more particularly, a field effect transistor that has a body contact and method of manufacturing the same is provided. The structure includes a device having a raised source region of a first conductivity type and an active region below the raised source region extending to a body of the device. The active region has a second conductivity type different than the first conductivity type. A contact region is in electric contact with the active region. The method includes forming a raised source region over an active region of a device and forming a contact region of a same conductivity type as the active region, wherein the active region forms a contact body between the contact region and a body of the device.02-12-2015

Patent applications by John J. Pekarik, Underhill, VT US

John J. Pekarik, Essex Junction, VT US

Patent application numberDescriptionPublished
20120129309METHOD FOR FABRICATING HIGH-GAIN MOSFETS WITH ASYMMETRIC SOURCE/DRAIN DOPING FOR ANALOG AND RF APPLICATIONS - A method of fabrication of an analog, asymmetric Metal-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) is provided. The method may comprise forming a first gate oriented in a first direction over an active region of a semiconductor substrate, forming a second gate extending perpendicular to the first gate over a second active region, using a dual-directional implant process to form a reduced-HALO doped area on a drain side of the first gate and also for a HALO doped area for the second gate, while the source side of the first gate is covered by a resist. Additionally, the method may comprise forming a HALO doped area on the source side of the first gate using a quad-directional implant process using the mask also used for HALO implants of other digital-logic devices on the substrate, while the drain side of the gate is blocked by a resist.05-24-2012
Website © 2015 Advameg, Inc.