Patent application number | Description | Published |
20110269595 | CONTROL STRATEGY FOR OPERATING A LOCKING DIFFERENTIAL - A drive train having a locking differential and a control unit for controlling operation of the locking differential. The control unit is responsive to selected vehicle characteristics to sua sponte activate or inactivate a locking mechanism of the locking differential to cause the locking differential to operate in a locked manner or an unlocked manner, respectively. A method for operating a locking differential is also provided. The method includes: utilizing only preselected vehicle criteria indicative of the operational state of the vehicle to identify a situation in which a locking mechanism associated with the locking differential is to be energized; and responsively energizing the locking mechanism. | 11-03-2011 |
20130029797 | MULTIPLE PUMP CONFIGURATION FOR ELECTRONIC LIMITED SLIP DIFFERENTIAL AND TORQUE TRANSFER DEVICE - A hydraulic system for a vehicle drivetrain includes a torque transfer device having a first actuator that actuates to selectively communicate rotatable motion from an input member to an output member. A limited slip differential selectively transfers drive torque from the output member to at least one of the first and second axle shafts. A motor drives a first and a second output shaft. A first pump is rotatably driven by the first output shaft. The first pump selectively supplies the hydraulic fluid to the first actuator. A second pump is rotatably driven by the second output shaft. The second pump selectively supplies the hydraulic fluid to the second actuator. | 01-31-2013 |
20140144259 | TWO POSITION ACTUATOR WITH SENSING AND CONTROL - An actuator that causes a mode clutch to shift between an engaged position and a disengaged position is provided. The actuator comprises a motor having an output. A shift cam is caused to rotate based on the output of the motor. The shift cam has a cam profile surface. A cam follower rides along the cam profile surface upon rotation of the shift cam. Movement of the cam follower causes movement of a mode fork resulting in the mode clutch shifting between the engaged and disengaged positions. A sensor outputs a voltage to a controller based on a physical location of the cam follower. The controller activates the motor based on the voltage. | 05-29-2014 |
20140213412 | CONTROL STRATEGY FOR OPERATING A LOCKING DIFFERENTIAL - A drive train having a locking differential and a control unit for controlling operation of the locking differential. The control unit is responsive to selected vehicle characteristics to sua sponte activate or inactivate a locking mechanism of the locking differential to cause the locking differential to operate in a locked manner or an unlocked manner, respectively. A method for operating a locking differential is also provided. The method includes: utilizing only preselected vehicle criteria indicative of the operational state of the vehicle to identify a situation in which a locking mechanism associated with the locking differential is to be energized; and responsively energizing the locking mechanism. | 07-31-2014 |
20140302961 | Axle Assembly - An axle assembly having an axle housing, an input pinion, a ring gear, a ring gear bearing, a differential assembly and a pair of axle shafts. The input pinion is mounted to the axle housing for rotation about a first axis. The ring gear is received in the axle housing and meshed with the input pinion. The ring gear bearing supports the ring gear on the axle housing for rotation about a second axis. The ring gear bearing has a bearing race, which is integrally formed with the ring gear, and a plurality of first bearing element that contact the first bearing race. The differential assembly has a differential case, which is coupled to the ring gear for rotation therewith, and a pair of output members. Each axle shaft being coupled for rotation with a corresponding one of the output members. | 10-09-2014 |
20140339888 | Axle Assembly With Inboard Axle Shaft Bearings That Support A Differential Mechanism - An axle assembly having a housing, a ring gear received in the housing, a ring gear bearing, a pair of shafts, a differential mechanism and a pair of inboard bearings. The ring gear bearing contacts the housing and the ring gear to support the ring gear for rotation about an axis. The shafts are received in the housing and rotate about the axis. Each of the shafts has a bearing mount and a male splined segment. The differential mechanism has a pair of output members, each of which having a splined internal aperture into which the male splined segment of one of the shafts is slidably received. Each shaft bearing is disposed on the bearing mount of one of the axle shafts and supports the shafts for rotation on the housing. The differential mechanism is supported for rotation about the axis by the ring gear bearing and the inboard bearings. | 11-20-2014 |
20150057123 | OPTIMIZED OUTER CLUTCH HOUSING FOR REDUCED SPIN LOSS, IMPROVED OIL FLOW AND IMPROVED CLUTCH DURABILITY - A torque transfer device can include a housing and a clutch. The housing can define a clutch cavity and a pocket. The pocket can be formed at an axial end of the clutch cavity and have a generally arcuate shape that extends circumferentially about the clutch cavity above a static lubrication level. The clutch can include an outer carrier, an inner carrier, a plurality of first and second interleaved friction plates. One of an outer and an inner plate carrier of the clutch can be coupled to an input member for common rotation. The other of the carriers can be coupled to a differential case for common rotation. Rotation of the outer carrier relative to the housing through a fluid in the clutch cavity can sling a portion of the fluid toward an inner surface of the housing to cause the portion of the fluid to collect in the pocket. | 02-26-2015 |
20150057125 | POWER TRANSMITTING COMPONENT WITH TORQUE TRANSFER DEVICE CONFIGURED WITH DRAG REDUCTION SYSTEM - The present teachings provide for a power transmitting component including a housing, a clutch, a vent, and a dam. The vent can fluidly couple a first and second cavity. The dam can include a door member. Rotation of the outer carrier through a fluid in the second cavity can sling a portion of the fluid toward the vent to cause the portion of the fluid to be transferred from the second cavity, through the vent, and to the first cavity. When the piston is in a first position, the door member can be in a closed position to limit fluid flow from the first cavity to the second cavity. When the piston is in a second position, the door member can be in an open position to allow fluid to flow from the first cavity to the second cavity. | 02-26-2015 |