Patent application number | Description | Published |
20090175578 | SYSTEM AND METHOD FOR FIBER BASED RESONATOR COUPLING - A fiber optic alignment device on a crystalline substrate support is disclosed. An exemplary embodiment embodied in a resonator fiber optic gyro is fabricated by a process of forming a crystalline substrate support structure operable to support the first end portion of the optical fiber and the second end portion of the optical fiber; forming a first end V-groove portion and a second end V-groove portion in the support structure; physically coupling the first end portion of the optical fiber to the first end V-groove portion; and physically coupling the second end portion of the optical fiber to the second end V-groove portion. | 07-09-2009 |
20100014091 | ENHANCED SCALE FACTOR RING LASER GYROSCOPE - An embodiment of the invention enhances the rotation sensitivity and decreases the dead band width of a standard HeNe ring laser gyroscope (RLG), with the highest enhancement at low rotation rates. The addition of a gas with nuclear spin to the traditional HeNe gain medium is used to create the intracavity gain medium with an anomalous dispersive quality and thus enhanced rotation sensitivity. | 01-21-2010 |
20100033255 | PHYSICS PACKAGE DESIGN FOR A COLD ATOM PRIMARY FREQUENCY STANDARD - A physic package for an atomic clock comprising: a block made of optical glass, a glass ceramic material or another suitable material that includes a plurality of faces on its exterior and a plurality of angled borings that serve as a vacuum chamber cavity, light paths and measurement bores; mirrors fixedly attached using a vacuum tight seal to the exterior of the block at certain locations where two light paths intersect; optically clear windows fixedly attached using a vacuum tight seal to the block's exterior over openings of the measurement bores and at one location where two light paths intersect; and fill tubes fixedly attached using a vacuum tight seal to the exterior of the block over the ends of the vacuum chamber cavity. This physics package design makes possible atomic clocks having reduced size and power consumption and capable of maintaining an ultra-high vacuum without active pumping. | 02-11-2010 |
20100033256 | COLD ATOM MICRO PRIMARY STANDARD - An atomic clock having a physics package that includes a vacuum chamber cavity that holds atoms of Rb-87 under high vacuum conditions, an optical bench having a single laser light source, a local oscillator, a plurality of magnetic field coils, an antenna, at least one photo-detector and integrated control electronics. The single laser light source has a fold-retro-reflected design to create three retro-reflected optical beams that cross at 90° angles relative to one another in the vacuum chamber cavity. This design allows the single laser light source to make the required six trapping beams needed to trap and cool the atoms of Rb-87. The foregoing design makes possible atomic clocks having reduced size and power consumption and capable of maintaining an ultra-high vacuum without active pumping. | 02-11-2010 |
20110102894 | MIRROR DESIGN FOR SILICON OPTICAL BENCH - An optical component is provided. The optical component includes an optical-path portion including an arm-connecting portion and a lower portion, a first arm extending from a first end of the arm-connecting portion, and a second arm extending from a second end of the arm-connecting portion. The first arm has at least one resting feature and the second arm has at least one resting feature. The optical-path portion has an input surface. When the resting features of the first arm and the second arm are positioned on a top surface at short edges of a trench in a trench system, the optical-path portion is vertically aligned in the trench. | 05-05-2011 |
20120033224 | INCREASING THE SCALE FACTOR OF GAS LASER BASED GYROSCOPES WITH AN EXTERNAL GAIN SATURATION BEAM - A ring laser gyroscope that includes a cavity containing a gain medium, a first plurality of reflective surfaces coupled to the cavity, a medium exciter operable to excite the gain medium, and a saturation beam source operable to emit a saturation beam. The first plurality of reflective surfaces includes a first reflective surface, a second reflective surface, and a third reflective surface. The first, second, and third reflective surfaces are positioned to reflect light along a path defined in the cavity between the plurality of reflective surfaces. The excited gain medium induces first and second laser fields within the cavity. The emitted saturation beam intersects with the first and second laser fields at a first interaction region of the cavity. The saturation beam interacts with the gain medium to reduce the gain of the first and second laser fields at a first range of frequencies. | 02-09-2012 |
20120300198 | FREQUENCY STABILIZED LASER SYSTEM - A laser stabilization system includes laser source having first and second ends; first waveguide portion having first and second ends, first end of first waveguide portion coupled to first end of laser source; second waveguide portion having first and second ends, first end of second waveguide portion coupled to second end of laser source; micro-cavity coupled between second end of first waveguide portion and second end of second waveguide portion, micro-cavity having resonant frequency; and electronic locking loop coupled between micro-cavity and laser source, wherein electronic locking loop electronically locks laser source to resonant frequency of micro-cavity; wherein first waveguide portion is optical locking loop coupled between micro-cavity and laser source, wherein optical locking loop optically locks laser source to resonant frequency of micro-cavity; micro-cavity stabilization loop coupled with micro-cavity, wherein micro-cavity stabilization loop stabilizes resonant frequency of micro-cavity to reference frequency; and output for outputting light from system. | 11-29-2012 |
20130003059 | SIMPLE, LOW POWER MICROSYSTEM FOR SATURATION SPECTROSCOPY - A spectroscopic assembly is provided. The spectroscopic assembly includes a thermal isolation platform, a gas reference cell encasing a gas and attached to the thermal isolation platform, the gas reference cell having at least one optically-transparent window, and at least one heater configured to raise a temperature of the encased gas. When a beamsplitter is configured to reflect a portion of an input optical beam emitted by a laser to be incident on the at least one optically-transparent window of the gas reference cell, the reflected portion of the input optical beam is twice transmitted through the gas. When a detector is configured to receive the optical beam twice transmitted through the gas, a feedback signal is provided to the laser to stabilize the laser. | 01-03-2013 |
20130061655 | SYSTEMS AND METHODS FOR GETTERING AN ATOMIC SENSOR - Embodiments of the present invention provide improved systems and methods for providing an atomic sensor device. In one embodiment, the device comprises a sensor body, the sensor body enclosing an atomic sensor, wherein the sensor body contains a gas evacuation site located on the sensor body, the gas evacuation site configured to connect to a gas evacuation device. The device also comprises a getter container coupled to an opening in the sensor body, an opening in the getter container coupled to an opening in the sensor body, such that gas within the sensor body can freely enter the getter container. The device further comprises an evaporable getter enclosed within the getter container, the evaporable getter facing away from the sensor body. | 03-14-2013 |
20130194046 | SYSTEMS AND METHODS FOR EXTERNAL FRIT MOUNTED COMPONENTS - Embodiments of the present invention provide improved systems and methods for external frit mounted components on a sensor device. In one embodiment, a method for fabricating a sensor device comprises securing at least one component stack on a sensor body over at least one opening in the sensor body, wherein the at least one component stack comprises a plurality of components and applying a frit to the plurality of components in the at least one component stack and the sensor body. The method further comprises heating the frit, the at least one component stack, and the sensor body such that the frit melts and cooling the frit, the at least one component stack, and the sensor body such that the at least one component stack is secured to the sensor body. | 08-01-2013 |
20130213940 | ON-CHIP ALKALI DISPENSER - Embodiments described herein provide for an on-chip alkali dispenser. The on-chip alkali dispenser includes a monolithic semiconductor substrate defining a trench therein, and an evaporable metal material disposed in the trench. A heating element is disposed proximate the evaporable metal material and configured to provide heat to the evaporable metal material. A getter material is disposed to sorb unwanted materials released from the evaporable metal material. | 08-22-2013 |
20130265112 | LOW POWER REDUCTION OF BIASES IN A MICRO PRIMARY FREQUENCY STANDARD - A method for reducing or eliminating clock bias in an atomic clock is provided. The method comprises cooling a population of atoms collected in the atomic clock using a laser locked at a predetermined frequency, turning off the laser, performing atomic clock spectroscopy, turning on the laser after the atomic clock spectroscopy, and relocking the frequency of the laser to an external reference cell. The population of atoms that are in each of two ground hyperfine levels is then probed using laser light that is on or near-resonant with a selected atomic transition. | 10-10-2013 |
20130320231 | ATOMIC SENSOR PHYSICS PACKAGE WITH INTEGRATED TRANSMISSIVE AND REFLECTIVE PORTIONS ALONG LIGHT PATHS - In one embodiment, a block for a physics package of an atomic sensor is provided. The block comprises one or more sections of optically transparent material defining a vacuum sealed chamber, and including a plurality of transmissive and reflective surfaces to define a plurality of light paths intersecting the vacuum sealed chamber. The one or more sections of optically transparent material include a first monolithic section defining at least a portion of the vacuum sealed chamber. The first monolithic section includes a first portion disposed across a first light path of the plurality of light paths such that light in the first light path is incident on the first portion of the first monolithic section. | 12-05-2013 |
20140022534 | CLOSED LOOP ATOMIC INERTIAL SENSOR - An apparatus for inertial sensing is provided. The apparatus comprises at least one atomic inertial sensor, and one or more micro-electrical-mechanical systems (MEMS) inertial sensors operatively coupled to the atomic inertial sensor. The atomic inertial sensor and the MEMS inertial sensors operatively communicate with each other in a closed feedback loop. | 01-23-2014 |
20140096607 | ATOMIC SENSOR PHYSICS PACKAGE WITH METAL FRAME - One embodiment is directed towards a physics package of an atomic sensor. The physics package includes a frame composed of metal and including a plurality of slender support members extending between one another in a three dimensional structure. The support members define boundaries between adjacent apertures defined in the frame. The plurality of support members include a plurality of mounting surfaces adjacent to the apertures. The physics package also includes a plurality of panes attached to the mounting surfaces of the frame. The plurality of panes cover the apertures such that the frame and the plurality of panes define a vacuum chamber and provide three light paths that cross within the vacuum chamber at 90 degree angles with respect to one another. The physics package also includes a chamber evacuation structure for evacuating the vacuum chamber. | 04-10-2014 |
20150022273 | SYSTEMS AND METHODS FOR A COLD ATOM FREQUENCY STANDARD - Systems and methods for a cold atom frequency standard are provided herein. In certain embodiments, a cold atom microwave frequency standard includes a vacuum cell, the vacuum cell comprising a central cylinder, the central cylinder being hollow and having a first open end and a second open end; a first end portion joined to the first open end; and a second end portion joined to the second open end, wherein the first end portion, the central cylinder, and the second end portion enclose a hollow volume containing atoms, the first end portion and the second end portion configured to allow light to enter into the hollow volume. The cold atom microwave frequency standard also includes a cylindrically symmetric resonator encircling the central cylinder, wherein the resonator generates a microwave field in the hollow volume at the resonant frequency of the atoms. | 01-22-2015 |
20150022816 | ATOMIC SENSOR PHYSICS PACKAGE HAVING OPTICALLY TRANSPARENT PANES AND EXTERNAL WEDGES - One embodiment is directed towards a physics package of an atomic sensor. The physics package includes a plurality of panes of optically transparent material enclosing a vacuum chamber and one or more wedges attached to an external surface of one or more of the panes. The physics package also includes at least one of a light source, photodetector, or mirror attached to the one or more wedges, the light source configured to generate an input light beam for the vacuum chamber, the photodetector configured to detect an output light beam from the vacuum chamber, and the mirror configured to reflect a light beam from the vacuum chamber back into the vacuum chamber, wherein the wedge is configured to oriented such a light source, photodetector, or mirror such that a respective light beam corresponding thereto transmits through a corresponding pane at an acute angle with respect to the corresponding pane. | 01-22-2015 |