Patent application number | Description | Published |
20080220588 | STRAINED Si MOSFET ON TENSILE-STRAINED SiGe-ON-INSULATOR (SGOI) - A semiconductor structure for use as a template for forming high-performance metal oxide semiconductor field effect transistor (MOSFET) devices is provided. More specifically, the present invention provides a structure that includes a SiGe-on-insulator substrate including a tensile-strained SiGe alloy layer located atop an insulating layer; and a strained Si layer atop the tensile-strained SiGe alloy layer. The present invention also provides a method of forming the tensile-strained SGOI substrate as well as the heterostructure described above. The method of the present invention decouples the preference for high strain in the strained Si layer and the Ge content in the underlying layer by providing a tensile-strained SiGe alloy layer directly atop on an insulating layer. | 09-11-2008 |
20080261055 | PREPARATION OF HIGH QUALITY STRAINED-SEMICONDUCTOR DIRECTLY-ON-INSULATOR SUBSTRATES - A method for achieving a substantially defect free SGOI substrate which includes a SiGe layer that has a high Ge content of greater than about 25 atomic % using a low temperature wafer bonding technique is described. Similarly, a method for forming thin to ultra-thin strain Si, SiC, or SiC/Si layers directly on insulator substrates having a strain content in the range of about 1-5% is further described | 10-23-2008 |
20090004831 | METHOD OF CREATING DEFECT FREE HIGH Ge CONTENT (> 25%) SiGe-ON-INSULATOR (SGOI) SUBSTRATES USING WAFER BONDING TECHNIQUES - A method for achieving a substantially defect free SGOI substrate which includes a SiGe layer that has a high Ge content of greater than about 25 atomic % using a low temperature wafer bonding technique is described. The wafer bonding process described in the present application includes an initial prebonding annealing step that is capable of forming a bonding interface comprising elements of Si, Ge and O, i.e., interfacial SiGeO layer, between a SiGe layer and a low temperature oxide layer. The present invention also provides the SGOI substrate and structure that contains the same. | 01-01-2009 |
20090206370 | METHOD AND APPARATUS FOR FABRICATING A HETEROJUNCTION BIPOLAR TRANSISTOR - In one embodiment, the invention is a method and apparatus for fabricating a heterojunction bipolar transistor. One embodiment of a heterojunction bipolar transistor includes a collector layer, a base region formed over the collector layer, a self-aligned emitter formed on top of the base region and collector layer, a poly-germanium extrinsic base surrounding the emitter, and a metal germanide layer formed over the extrinsic base. | 08-20-2009 |
20090206413 | CMOS INTEGRATION SCHEME EMPLOYING A SILICIDE ELECTRODE AND A SILICIDE-GERMANIDE ALLOY ELECTRODE - A p-type field effect transistor (PFET) and an n-type field effect transistor (NFET) are formed by patterning of a gate dielectric layer, a thin silicon layer, and a silicon-germanium alloy layer. After formation of the source/drain regions and gate spacers, silicon germanium alloy portions are removed from gate stacks. A dielectric layer is formed and patterned to cover an NFET gate electrode, while exposing a thin silicon portion for a PFET. Germanium is selectively deposited on semiconductor surfaces including the exposed silicon portion. The dielectric layer is removed and a metal layer is deposited and reacted with underlying semiconductor material to form a metal silicide for a gate electrode of the NFET, while forming a metal silicide-germanide alloy for a gate electrode of the PFET. | 08-20-2009 |
20090242989 | COMPLEMENTARY METAL-OXIDE-SEMICONDUCTOR DEVICE WITH EMBEDDED STRESSOR - In one embodiment, the invention is a complementary metal-oxide-semiconductor device with an embedded stressor. One embodiment of a field effect transistor includes a silicon on insulator channel, a gate electrode coupled to the silicon on insulator channel, and a stressor embedded in the silicon on insulator channel and spaced laterally from the gate electrode, where the stressor is formed of a silicon germanide alloy whose germanium content gradually increases in one direction. | 10-01-2009 |
20090311835 | NANOWIRE MOSFET WITH DOPED EPITAXIAL CONTACTS FOR SOURCE AND DRAIN - A FET structure with a nanowire forming the FET channel, and doped source and drain regions formed by radial epitaxy from the nanowire body is disclosed. A top gated and a bottom gated nanowire FET structures are discussed. The source and drain fabrication can use either selective or non-selective epitaxy. | 12-17-2009 |
20100038736 | SUSPENDED GERMANIUM PHOTODETECTOR FOR SILICON WAVEGUIDE - A vertical stack of a first silicon germanium alloy layer, a second epitaxial silicon layer, a second silicon germanium layer, and a germanium layer are formed epitaxially on a top surface of a first epitaxial silicon layer. The second epitaxial silicon layer, the second silicon germanium layer, and the germanium layer are patterned and encapsulated by a dielectric cap portion, a dielectric spacer, and the first silicon germanium layer. The silicon germanium layer is removed between the first and second silicon layers to form a silicon germanium mesa structure that structurally support an overhanging structure comprising a stack of a silicon portion, a silicon germanium alloy portion, a germanium photodetector, and a dielectric cap portion. The germanium photodetector is suspended by the silicon germanium mesa structure and does not abut a silicon waveguide. Germanium diffusion into the silicon waveguide and defect density in the germanium detector are minimized. | 02-18-2010 |
20100176495 | LOW COST FABRICATION OF DOUBLE BOX BACK GATE SILICON-ON-INSULATOR WAFERS - A semiconductor wafer structure for integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate; an electrically conductive layer formed on the lower insulating layer; an upper insulating layer formed on the electrically conductive layer, the upper insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; and a semiconductor layer formed on the upper insulating layer. | 07-15-2010 |
20110143482 | SUSPENDED GERMANIUM PHOTODETECTOR FOR SILICON WAVEGUIDE - A vertical stack of a first silicon germanium alloy layer, a second epitaxial silicon layer, a second silicon germanium layer, and a germanium layer are formed epitaxially on a top surface of a first epitaxial silicon layer. The second epitaxial silicon layer, the second silicon germanium layer, and the germanium layer are patterned and encapsulated by a dielectric cap portion, a dielectric spacer, and the first silicon germanium layer. The silicon germanium layer is removed between the first and second silicon layers to form a silicon germanium mesa structure that structurally support an overhanging structure comprising a stack of a silicon portion, a silicon germanium alloy portion, a germanium photodetector, and a dielectric cap portion. The germanium photodetector is suspended by the silicon germanium mesa structure and does not abut a silicon waveguide. Germanium diffusion into the silicon waveguide and defect density in the germanium detector are minimized. | 06-16-2011 |
20120028052 | GRAPHENE GROWTH ON A NON-HEXAGONAL LATTICE - A graphene layer is formed on a crystallographic surface having a non-hexagonal symmetry. The crystallographic surface can be a surface of a single crystalline semiconductor carbide layer. The non-hexagonal symmetry surface of the single crystalline semiconductor carbide layer is annealed at an elevated temperature in ultra-high vacuum environment to form the graphene layer. During the anneal, the semiconductor atoms on the non-hexagonal surface of the single crystalline semiconductor carbide layer are evaporated selective to the carbon atoms. As the semiconductor atoms are selectively removed, the carbon concentration on the surface of the semiconductor-carbon alloy layer increases. Despite the non-hexagonal symmetry of the surface of the semiconductor-carbon alloy layer, the remaining carbon atoms can coalesce to form a graphene layer having hexagonal symmetry. | 02-02-2012 |
20120112164 | FORMATION OF A GRAPHENE LAYER ON A LARGE SUBSTRATE - A single crystalline silicon carbide layer can be grown on a single crystalline sapphire substrate. Subsequently, a graphene layer can be formed by conversion of a surface layer of the single crystalline silicon layer during an anneal at an elevated temperature in an ultrahigh vacuum environment. Alternately, a graphene layer can be deposited on an exposed surface of the single crystalline silicon carbide layer. A graphene layer can also be formed directly on a surface of a sapphire substrate or directly on a surface of a silicon carbide substrate. Still alternately, a graphene layer can be formed on a silicon carbide layer on a semiconductor substrate. The commercial availability of sapphire substrates and semiconductor substrates with a diameter of six inches or more allows formation of a graphene layer on a commercially scalable substrate for low cost manufacturing of devices employing a graphene layer. | 05-10-2012 |
20120112198 | EPITAXIAL GROWTH OF SILICON CARBIDE ON SAPPHIRE - remove impurities from an exposed surface in the ultrahigh vacuum environment. A high qualify single crystalline or polycrystalline silicon carbide film can be grown directly on the sapphire substrate by chemical vapor deposition employing a silicon-containing reactant and a carbon-containing reactant. Formation of single crystalline silicon carbide has been verified by x-ray diffraction, secondary ion mass spectroscopy, and transmission electron microscopy. | 05-10-2012 |
20120190155 | NANOWIRE MOSFET WITH DOPED EPITAXIAL CONTACTS FOR SOURCE AND DRAIN - A FET structure with a nanowire forming the FET channel, and doped source and drain regions formed by radial epitaxy from the nanowire body is disclosed. A top gated and a bottom gated nanowire FET structures are discussed. The source and drain fabrication can use either selective or non-selective epitaxy. | 07-26-2012 |
20120193603 | GRAPHENE GROWTH ON A CARBON-CONTAINING SEMICONDUCTOR LAYER - A semiconductor-carbon alloy layer is formed on the surface of a semiconductor substrate, which may be a commercially available semiconductor substrate such as a silicon substrate. The semiconductor-carbon alloy layer is converted into at least one graphene layer during a high temperature anneal, during which the semiconductor material on the surface of the semiconductor-carbon alloy layer is evaporated selective to the carbon atoms. As the semiconductor atoms are selectively removed and the carbon concentration on the surface of the semiconductor-carbon alloy layer increases, the remaining carbon atoms in the top layers of the semiconductor-carbon alloy layer coalesce to form a graphene layer having at least one graphene monolayer. Thus, a graphene layer may be provided on a commercially available semiconductor substrate having a diameter of 200 mm or 300 mm. | 08-02-2012 |
20120319078 | GRAPHENE GROWTH ON A NON-HEXAGONAL LATTICE - A graphene layer is formed on a crystallographic surface having a non-hexagonal symmetry. The crystallographic surface can be a surface of a single crystalline semiconductor carbide layer. The non-hexagonal symmetry surface of the single crystalline semiconductor carbide layer is annealed at an elevated temperature in ultra-high vacuum environment to form the graphene layer. During the anneal, the semiconductor atoms on the non-hexagonal surface of the single crystalline semiconductor carbide layer are evaporated selective to the carbon atoms. As the semiconductor atoms are selectively removed, the carbon concentration on the surface of the semiconductor-carbon alloy layer increases. Despite the non-hexagonal symmetry of the surface of the semiconductor-carbon alloy layer, the remaining carbon atoms can coalesce to form a graphene layer having hexagonal symmetry. | 12-20-2012 |
20130048061 | MONOLITHIC MULTI-JUNCTION PHOTOVOLTAIC CELL AND METHOD - A device and method for fabrication of a multi-junction photovoltaic device includes providing a parent substrate including a single crystal III-V material. The parent substrate forms a III-V cell of the multi-junction photovoltaic device. A lattice-matched Germanium layer is epitaxially grown on the III-V material to form a final cell of the multi-junction photovoltaic device. The Germanium layer is bonded to a foreign substrate. | 02-28-2013 |
20130285014 | FORMATION OF A GRAPHENE LAYER ON A LARGE SUBSTRATE - A single crystalline silicon carbide layer can be grown on a single crystalline sapphire substrate. Subsequently, a graphene layer can be formed by conversion of a surface layer of the single crystalline silicon layer during an anneal at an elevated temperature in an ultrahigh vacuum environment. Alternately, a graphene layer can be deposited on an exposed surface of the single crystalline silicon carbide layer. A graphene layer can also be formed directly on a surface of a sapphire substrate or directly on a surface of a silicon carbide substrate. Still alternately, a graphene layer can be formed on a silicon carbide layer on a semiconductor substrate. The commercial availability of sapphire substrates and semiconductor substrates with a diameter of six inches or more allows formation of a graphene layer on a commercially scalable substrate for low cost manufacturing of devices employing a graphene layer. | 10-31-2013 |
20140103286 | INTEGRATED CIRCUIT TAMPER DETECTION AND RESPONSE - The present disclosure relates to integrated circuits having tamper detection and response devices and methods for manufacturing such integrated circuits. One integrated circuit having a tamper detection and response device includes at least one photovoltaic cell and at least one memory cell coupled to the at least one photovoltaic cell. When the at least one photovoltaic cell is exposed to radiation, the at least one photovoltaic cell generates a current that causes an alteration to a memory state of the at least one memory cell. Another integrated circuit having a tamper detection and response device includes at least one photovoltaic cell and a reactive material coupled to the at least one photovoltaic cell, wherein a current from the at least one photovoltaic cell triggers an exothermic reaction in the reactive material. | 04-17-2014 |
20140217356 | THIN FILM WAFER TRANSFER AND STRUCTURE FOR ELECTRONIC DEVICES - An electronic device includes a spreading layer and a first contact layer formed over and contacting the spreading layer. The first contact layer is formed from a thermally conductive crystalline material having a thermal conductivity greater than or equal to that of an active layer material. An active layer includes one or more III-nitride layers. A second contact layer is formed over the active layer, wherein the active layer is disposed vertically between the first and second contact layers to form a vertical thin film stack. | 08-07-2014 |
20140217468 | PLANAR SEMICONDUCTOR GROWTH ON III-V MATERIAL - A semiconductor structure includes a III-V monocrystalline layer and a germanium surface layer. An interlayer is formed directly between the III-V monocrystalline layer and the germanium surface layer from a material selected to provide stronger nucleation bonding between the interlayer and the germanium surface layer than nucleation bonding that would be achievable directly between the III-V monocrystalline layer and the germanium surface layer such that a continuous, relatively defect-free germanium surface layer is provided. | 08-07-2014 |
20140220764 | THIN FILM WAFER TRANSFER AND STRUCTURE FOR ELECTRONIC DEVICES - A method for wafer transfer includes forming a spreading layer, including graphene, on a single crystalline SiC substrate. A semiconductor layer including one or more layers is formed on and is lattice matched to the crystalline SiC layer. The semiconductor layer is transferred to a handle substrate, and the spreading layer is split to remove the single crystalline SiC substrate. | 08-07-2014 |
20140220766 | PLANAR SEMICONDUCTOR GROWTH ON III-V MATERIAL - A semiconductor structure includes a III-V monocrystalline layer and a germanium surface layer. An interlayer is formed directly between the III-V monocrystalline layer and the germanium surface layer from a material selected to provide stronger nucleation bonding between the interlayer and the germanium surface layer than nucleation bonding that would be achievable directly between the III-V monocrystalline layer and the germanium surface layer such that a continuous, relatively defect-free germanium surface layer is provided. | 08-07-2014 |
20140252500 | SACRIFICIAL REPLACEMENT EXTENSION LAYER TO OBTAIN ABRUPT DOPING PROFILE - At least one gate structure having a first spacer located on a vertical sidewall thereof is provided on an uppermost surface of a semiconductor substrate. Exposed portions of the semiconductor substrate are then removed utilizing the at least one gate structure and first spacer as an etch mask. A sacrificial replacement material is formed on each recessed surface of the semiconductor substrate. Next, a second spacer is formed contacting the first spacer. Source/drain trenches are then provided by removing exposed portions of the sacrificial replacement material and an underlying portion of the semiconductor substrate. Remaining sacrificial replacement material located beneath the second spacer is removed providing an opening beneath the second spacer. A doped semiconductor material is formed within the source/drain trenches and the opening. | 09-11-2014 |
20140252501 | SACRIFICIAL REPLACEMENT EXTENSION LAYER TO OBTAIN ABRUPT DOPING PROFILE - At least one gate structure having a first spacer located on a vertical sidewall thereof is provided on an uppermost surface of a semiconductor substrate. Exposed portions of the semiconductor substrate are then removed utilizing the at least one gate structure and first spacer as an etch mask. A sacrificial replacement material is formed on each recessed surface of the semiconductor substrate. Next, a second spacer is formed contacting the first spacer. Source/drain trenches are then provided by removing exposed portions of the sacrificial replacement material and an underlying portion of the semiconductor substrate. Remaining sacrificial replacement material located beneath the second spacer is removed providing an opening beneath the second spacer. A doped semiconductor material is formed within the source/drain trenches and the opening. | 09-11-2014 |
20140312395 | SELF-ALIGNED BORDERLESS CONTACTS USING A PHOTO-PATTERNABLE DIELECTRIC MATERIAL AS A REPLACEMENT CONTACT - A photo-patternable dielectric material is provided to a structure which includes a substrate having at least one gate structure. The photo-patternable dielectric material is then patterned forming a plurality of sacrificial contact structures adjacent the at least one gate structure. A planarized middle-of-the-line dielectric material is then provided in which an uppermost surface of each of the sacrificial contact structures is exposed. Each of the exposed sacrificial contact structures is then removed providing contact openings within the planarized middle-of-the-line dielectric material. A conductive metal-containing material is formed within each contact opening. | 10-23-2014 |
20140312397 | SELF-ALIGNED BORDERLESS CONTACTS USING A PHOTO-PATTERNABLE DIELECTRIC MATERIAL AS A REPLACEMENT CONTACT - A photo-patternable dielectric material is provided to a structure which includes a substrate having at least one gate structure. The photo-patternable dielectric material is then patterned forming a plurality of sacrificial contact structures adjacent the at least one gate structure. A planarized middle-of-the-line dielectric material is then provided in which an uppermost surface of each of the sacrificial contact structures is exposed. Each of the exposed sacrificial contact structures is then removed providing contact openings within the planarized middle-of-the-line dielectric material. A conductive metal-containing material is formed within each contact opening. | 10-23-2014 |
20140374702 | CARBON NANOSTRUCTURE DEVICE FABRICATION UTILIZING PROTECT LAYERS - Hall effect devices and field effect transistors are formed incorporating a carbon-based nanostructure layer such as carbon nanotubes and/or graphene with a sacrificial metal layer formed there over to protect the carbon-based nanostructure layer during processing. | 12-25-2014 |
20150035060 | FIELD EFFECT TRANSISTOR (FET) WITH SELF-ALIGNED CONTACTS, INTEGRATED CIRCUIT (IC) CHIP AND METHOD OF MANUFACTURE - Field Effect Transistors (FETs), Integrated Circuit (IC) chips including the FETs, and a method of forming the FETs and IC. FET locations and adjacent source/drain regions are defined on a semiconductor wafer, e.g., a silicon on insulator (SOI) wafer. Source/drains are formed in source/drains regions. A stopping layer is formed on source/drains. Contact spacers are formed above gates. Source/drain contacts are formed to the stopping layer, e.g., after converting the stopping layer to silicide. The contact spacers separate source/drain contacts from each other. | 02-05-2015 |
20150044870 | METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE USING A SELF-ALIGNED OPL REPLACEMENT CONTACT AND PATTERNED HSQ AND A SEMICONDUCTOR DEVICE FORMED BY SAME - A method for manufacturing a semiconductor device, comprises forming an organic planarization layer on a plurality of gates on a substrate, wherein the plurality of gates each include a spacer layer thereon, forming an oxide layer on the organic planarization layer, removing a portion of the oxide layer to expose the organic planarization layer, stripping the organic planarization layer to form a cavity, patterning a direct lithographically-patternable gap dielectric on at least one of the gates in the cavity, and depositing a conductive contact in a remaining portion of the cavity. | 02-12-2015 |