Patent application number | Description | Published |
20090084758 | METHOD AND APPARATUS FOR SHAPING GAS PROFILE NEAR BEVEL EDGE - A method for etching a bevel edge of a substrate in a processing chamber is provided. The method includes flowing an inert gas into a center region of the processing chamber defined above a center region of the substrate and flowing a mixture of an inert gas and a processing gas over an edge region of the substrate. The method further includes striking a plasma in the edge region, wherein the flow of the inert gas and the flow of the mixture maintain a mass fraction of the processing gas substantially constant. A processing chamber configured to clean a bevel edge of a substrate is also provided. | 04-02-2009 |
20110005601 | GAS TRANSPORT DELAY RESOLUTION FOR SHORT ETCH RECIPES - In one embodiment, an apparatus for providing a gas mixture of a plurality of gases, may have a plurality of mass flow controllers (MFCs), a mixing manifold in fluid connection with each plurality of MFCs, a plurality of mixing manifold exits positioned on the mixing manifold; and an isolation device in fluid connection with each of the plurality of mixing manifold exits. | 01-13-2011 |
20110232566 | METHOD AND APPARATUS FOR SHAPING A GAS PROFILE NEAR BEVEL EDGE - A method for etching a bevel edge of a substrate in a processing chamber is provided. The method includes flowing an inert gas into a center region of the processing chamber defined above a center region of the substrate and flowing a mixture of an inert gas and a processing gas over an edge region of the substrate. The method further includes striking a plasma in the edge region, wherein the flow of the inert gas and the flow of the mixture maintain a mass fraction of the processing gas substantially constant. A processing chamber configured to clean a bevel edge of a substrate is also provided. | 09-29-2011 |
20120318362 | SYSTEM AND METHOD FOR DECREASING SCRUBBER EXHAUST FROM GAS DELIVERY PANELS - A method and apparatus is provided for decreasing the scrubber exhaust from gas panels, lower the cost of operation, lower the facilitation cost and power consumption by increasing the air velocity in areas of high potential risk of ignition. The apparatus includes a supply of compressed dry air (CDA) through the tubing with individual dispersion nozzles. The CDA dispersion nozzles can be installed at various key locations in order to provide additional ventilation turbulence and reduce potential dead zones inside the gas panel. Aspects of the invention help to save the energy and protect the environment by reducing the power consumption. In addition human safety shall be improved by minimizing the potential risk of ignition. | 12-20-2012 |
20130255781 | SHARED GAS PANELS IN PLASMA PROCESSING SYSTEMS - Methods and apparatus for shared gas panel for supplying a process gas to a plurality of process modules are disclosed. The shared gas panel includes a plurality of mixing valves and at least two mixing manifolds for a given mixing valve to service at least two process modules. The mixing manifolds are disposed on a given plane and staggered to save space. Components of the shared gas panel are also stacked vertically in order to reduce volume of the shared gas panel enclosure. Components are optimized such that the two mixing manifolds coupled to the given mixing valve receive equal mass flow to eliminate matching issues. | 10-03-2013 |
20130255782 | SHARED GAS PANELS IN PLASMA PROCESSING CHAMBERS EMPLOYING MULTI-ZONE GAS FEEDS - Apparatus and methods for sharing a gas panel among a plurality of multi-zone gas feed chambers of a plasma processing chamber. Each multi-zone gas feed chamber is provided with its own multi-zone gas feed device to adjustably split the incoming gas flow into each chamber and provide the different gas flows to different zones of the multi-zone gas feed chamber. | 10-03-2013 |
20140182689 | GAS SUPPLY SYSTEMS FOR SUBSTRATE PROCESSING CHAMBERS AND METHODS THEREFOR - A gas supply subsystem for providing a set of process gases to a substrate processing chamber, the set of process gases being a subset of a plurality of process gases available to the substrate processing chamber. The gas supply subsystem has fewer multi-gas mass flow controllers than the number of available process gases, wherein multiple process gases are multiplexed at the input of one or more of the multi-gas mass flow controllers. Pump-purge may be employed to improve gas switching speed for the multi-gas mass flow controllers | 07-03-2014 |
20140343875 | METROLOGY METHOD FOR TRANSIENT GAS FLOW - A method of calculating a transient flow rate of a flowed process gas comprises flowing process gas through a mass flow controller into a chamber of known volume and measuring successive data sample points which include pressure data, temperature data, and a time value for each successive data sample point. Groups of successive data sample points are identified wherein each group shares one or more successive data sample points with another group, and ratio values are calculated for each of the successive data sample points wherein each ratio value is a ratio between the pressure data and a product of temperature and gas compressibility data for each respective time value. A line of best fit of the ratio values is determined within at least one group, and then the transient flow rate of the flowed process gas is calculated using a pressure rate of rise technique wherein the pressure rate of rise technique utilizes a ratio value determined from the line of best fit for at least one time value within the at least one group. | 11-20-2014 |
20150068613 | Clutter Mass Flow Devices and Multi-Line Mass Flow Devices Incorporating The Same - A multi-line mass flow device configured for controlled delivery of two or more fluids into a process chamber. The multi-line mass flow device comprises a cluster mass flow control manifold and a multi-inlet manifold. The cluster mass flow control manifold comprises a controller, a gas manifold mounting block, and two or more gas flow control stations. The multi-inlet manifold comprises a multi-inlet mounting block, and two or more isolation valves mounted on the multi-inlet mounting block. | 03-12-2015 |