Patent application number | Description | Published |
20080211800 | DISPLAY DEVICE - A display device is driven through no wire cable such as an FPC, and a display image is continuously held for a certain period of time by storing an image signal received from a wireless communication device so that the display image can be held even when the display device is out of communication range with the wireless communication device. A display device includes at least a pixel circuit having an SRAM (static random access memory) circuit, a circuit which controls the pixel circuit, an antenna circuit, a circuit which generates a demodulation signal, a circuit which rectifies a wireless signal, a circuit which generates first voltage, a charge circuit which stores second voltage, a charge control circuit, a voltage supply control circuit, and a circuit which controls the charge control circuit and the voltage supply control circuit. | 09-04-2008 |
20080231617 | Display Device - To provide a display device in which reliability of a driver circuit can be improved by suppressing shift of the threshold voltage of a TFT. The minimum power supply voltage that is optimal for driving a transistor used in the driver circuit is found by actually changing voltage applied to a gate of the transistor. Specifically, voltage that is output from an output circuit included in the driver circuit when a value of power supply voltage applied to a shift register is changed is monitored. Then, a value of the power supply voltage is found such that a value of the voltage output from the output circuit satisfies a value enough to operate a pixel portion, and the driver circuit is operated using the power supply voltage. | 09-25-2008 |
20080246716 | Display Device - To provide a display device which can ensure high reliability of a driver circuit even when a threshold voltage of a TFT shifts. The display device includes a power supply control circuit which can apply a forward bias voltage or a reverse bias voltage to a gate of a transistor included in an output circuit, a monitor transistor which is formed to monitor the amount of change of a threshold voltage of the transistor included in the output circuit, and a threshold control circuit which controls the power supply control circuit so as to apply the reverse bias voltage to the gate of the transistor in order to compensate the threshold voltage of the transistor included in the output circuit. | 10-09-2008 |
20080246717 | Display Device - The display device includes an output circuit, a threshold control circuit which sequentially selects one of a forward bias voltage and a reverse bias voltage, and a power supply control circuit which applies one of the forward bias voltage and the reverse bias voltage which is selected to a gate of a transistor included in the output circuit. Time in which the reverse bias voltage is applied to the gate of the transistor is determined in accordance with time in which the forward bias voltage is applied to the gate of the transistor. | 10-09-2008 |
20080258998 | PULSE OUTPUT CIRCUIT, SHIFT REGISTER, AND DISPLAY DEVICE - An object is to suppress change of a threshold voltage of a transistor in a shift register and to prevent the transistor from malfunctioning during a non-selection period. A pulse output circuit provided in the shift register regularly supplies a potential to a gate electrode of a transistor which is in a floating state so that the gate electrode is turned on during a non-selection period when a pulse is not outputted. In addition, supply of a potential to the gate electrode of the transistor is performed by turning on or off another transistor regularly. | 10-23-2008 |
20090001378 | DISPLAY DEVICE AND DRIVING METHOD THEREOF - A display device in which not only a variation in a current value due to a threshold voltage but also a variation in a current value due to mobility are prevented from influencing luminance with respect to all the levels of grayscale to be displayed. After applying an initial potential for correction to a gate and a drain of a driving transistor, the gate and the drain of the driving transistor is kept connected in a floating state, and a voltage is held in a capacitor before a voltage between the gate and a source of the driving transistor becomes equal to a threshold voltage. When a voltage obtained by subtracting the voltage held in the capacitor from a voltage of a video signal is applied to the gate and the source of the driving transistor, a current is supplied to a light-emitting element. A value of an initial voltage for correction differs in accordance with the voltage of the video signal. | 01-01-2009 |
20090072321 | THIN FILM TRANSISTOR, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING THE SAME - A semiconductor element is operated without being affected even when the substrate is largely affected by heat shrink such as a large substrate. Furthermore, a thin film semiconductor circuit and a thin film semiconductor device each having the semiconductor element. Also, a semiconductor element is operated without being affected even if there is slight mask deviation. In view of them, a plurality of gate electrodes formed so as to overlap a lower concentration impurity region of a semiconductor layer than drain regions on a drain region side. Also, source regions and the drain regions corresponding to the respective gate electrodes are formed so that current flows in opposite directions each other through channel regions corresponding to the gate electrodes. Further, the number of the channel regions in which a current flows in a first direction is equal to the number of the channel regions in which a current flows in a direction opposite to the first direction. | 03-19-2009 |
20090159890 | Semiconductor Display Device - A semiconductor display device using a light-emitting element, which can suppress luminance unevenness among pixels due to the potential drop of a wiring, is provided. Power supply lines to which a power supply potential is supplied are electrically connected to each other in a display region where a plurality of pixels are arranged. Further, an interlayer insulating film is formed over a wiring (an auxiliary power supply line) for electrically connecting the power supply lines to each other in the display region and a gate electrode of a transistor included in a pixel; and the power supply lines are formed over the interlayer insulating film which is formed over the auxiliary power supply line and the gate electrode. Furthermore, a wiring (an auxiliary wiring) formed over the interlayer insulating film is electrically or directly connected to the auxiliary power supply line. | 06-25-2009 |
20090257283 | METHOD FOR DELETING DATA FROM NAND TYPE NONVOLATILE MEMORY - To provide a method of releasing charges which have been injected into charge accumulating layers of nonvolatile memory elements without using a substrate terminal such as a p well or an n well, as a method for deleting data from a NAND-type nonvolatile memory. In the method for deleting data from the NAND-type nonvolatile memory, charges stored in a charge accumulating layer of a first nonvolatile memory element are released by applying a first potential to a bit line and a source line, a second potential to a control gate of the first nonvolatile memory element, and a third potential which is different from the second potential to a control gate of a second nonvolatile memory element. | 10-15-2009 |
20090321616 | PHOTOELECTRIC CONVERSION DEVICE AND ELECTRONIC APPLIANCE - The resolution to the illuminance of light in photoelectric conversion is improved. A photoelectric conversion circuit | 12-31-2009 |
20100035661 | PHOTOELECTRIC CONVERSION DEVICE AND ELECTRONIC DEVICE HAVING THE SAME - To output a digital signal corresponding to illuminance without being adversely affected by circuit delay. A photoelectric conversion device includes a photoelectric conversion element; a ramp-wave output circuit; a first comparator for comparing the ramp-wave signal and a first potential; a second comparator for comparing the ramp-wave signal and a second potential; a flip-flop circuit for generating a clock signal whose frequency is changed in accordance with the amount of photocurrent; a circuit for calculating a negative OR of the output signal of the first comparator and the output signal of the second comparator; a counter circuit for counting the pulse number of the clock signal; and a pulse output circuit for generating a period during which the pulse number is counted in the counter circuit. The pulse output circuit includes a switch for stopping the generation of the period during which the pulse number is counted. | 02-11-2010 |
20100133601 | SEMICONDUCTOR DEVICE - A semiconductor device is provided, which comprises at least a cell including a plurality of memory elements connected in series. Each of the plurality of memory elements includes a channel formation region, a source and drain regions, a floating gate, and a control gate. Each of the source and drain regions is electrically connected to an erasing line through a semiconductor impurity region. | 06-03-2010 |
20100164938 | LIGHT EMITTING DEVICE - Power consumption required for charging and discharging a source signal line is reduced in an active matrix EL display device. A bipolar transistor (Bi | 07-01-2010 |
20100201659 | PULSE OUTPUT CIRCUIT, DISPLAY DEVICE, AND ELECTRONIC DEVICE - An object of the present invention is to suppress deterioration in the thin film transistor. A plurality of pulse output circuits each include first to eleventh thin film transistors is formed. The pulse output circuit is operated on the basis of a plurality of clock signals which control each transistor, the previous stage signal input from a pulse output circuit in the previous stage, the next stage signal input from a pulse output circuit in the next stage, and a reset signal. In addition, a microcrystalline semiconductor is used for a semiconductor layer serving as a channel region of each transistor. Therefore, degradation of characteristics of the transistor can be suppressed. | 08-12-2010 |
20100276694 | DISPLAY DEVICE, METHOD FOR MANUFACTURING THE SAME, AND ELECTRONIC DEVICE HAVING THE SAME - In a case where a p-channel thin film transistor is used as a thin film transistor that is electrically connected to a light-emitting element and drives the light-emitting element, a value of cutoff current of the p-channel thin film transistor is made lower than that of a p-channel thin film transistor of a driver circuit. Specifically, channel doping is selectively performed on a semiconductor layer of a thin film transistor included in a pixel. | 11-04-2010 |
20100277985 | Verification Method for Nonvolatile Semiconductor Memory Device - The present invention provides nonvolatile semiconductor memory devices which operate with low power consumption. In a nonvolatile semiconductor memory device, a plurality of nonvolatile memory elements are connected in series. The plurality of nonvolatile memory elements include a semiconductor layer including a channel forming region and a control gate provided to overlap with the channel forming region. Operations of write, erase, a first read, and a second read in a verify operation of data to the nonvolatile memory elements, are conducted by changing voltage to the control gates of the nonvolatile memory elements. The second read in the verify operation after erase operation is conducted by changing only one of a potential of the control gate of a nonvolatile memory element which are selected from the plurality of nonvolatile memory elements, and as the potential, a potential different from a potential of the first read is used. | 11-04-2010 |
20110001545 | DISPLAY DEVICE AND DRIVING METHOD THEREOF - A display device in which not only a variation in a current value due to a threshold voltage but also a variation in a current value due to mobility are prevented from influencing luminance with respect to all the levels of grayscale to be displayed. After applying an initial potential for correction to a gate and a drain of a driving transistor, the gate and the drain of the driving transistor is kept connected in a floating state, and a voltage is held in a capacitor before a voltage between the gate and a source of the driving transistor becomes equal to a threshold voltage. When a voltage obtained by subtracting the voltage held in the capacitor from a voltage of a video signal is applied to the gate and the source of the driving transistor, a current is supplied to a light-emitting element. A value of an initial voltage for correction differs in accordance with the voltage of the video signal. | 01-06-2011 |
20110012105 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is to increase an aperture ratio of a semiconductor device. The semiconductor device includes a driver circuit portion and a display portion (also referred to as a pixel portion) over one substrate. The driver circuit portion includes a channel-etched thin film transistor for a driver circuit, in which a source electrode and a drain electrode are formed using metal and a channel layer is formed of an oxide semiconductor, and a driver circuit wiring formed using metal. The display portion includes a channel protection thin film transistor for a pixel, in which a source electrode layer and a drain electrode layer are formed using an oxide conductor and a semiconductor layer is formed of an oxide semiconductor, and a display portion wiring formed using an oxide conductor. | 01-20-2011 |
20110012106 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device is provided in which a pixel portion and a driver circuit each including a thin film transistor are provided over one substrate; the thin film transistor in the pixel portion includes a gate electrode layer, a gate insulating layer, an oxide semiconductor layer having an end region with a small thickness, an oxide insulating layer in contact with part of the oxide semiconductor layer, source and drain electrode layers, and a pixel electrode layer; the thin film transistor in the pixel portion has a light-transmitting property; and source and drain electrode layers of the thin film transistor in the driver circuit portion are formed using a conductive material having lower resistance than a material of the source and drain electrode layer in the pixel portion. | 01-20-2011 |
20110012112 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An aperture ratio of a semiconductor device is improved. A driver circuit and a pixel are provided over one substrate, and a first thin film transistor in the driver circuit and a second thin film transistor in the pixel each include a gate electrode layer, a gate insulating layer over the gate electrode layer, an oxide semiconductor layer over the gate insulating layer, source and drain electrode layers over the oxide semiconductor layer, and an oxide insulating layer in contact with part of the oxide semiconductor layer over the gate insulating layer, the oxide semiconductor layer, and the source and drain electrode layers. The gate electrode layer, the gate insulating layer, the oxide semiconductor layer, the source and drain electrode layers, and the oxide insulating layer of the second thin film transistor each have a light-transmitting property. | 01-20-2011 |
20110012116 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A highly reliable display device which has high aperture ratio and includes a transistor with stable electrical characteristics is manufactured. The display device includes a driver circuit portion and a display portion over the same substrate. The driver circuit portion includes a driver circuit transistor and a driver circuit wiring. A source electrode and a drain electrode of the driver circuit transistor are formed using a metal. A channel layer of the driver circuit transistor is formed using an oxide semiconductor. The driver circuit wiring is formed using a metal. The display portion includes a pixel transistor and a display portion wiring. A source electrode and a drain electrode of the pixel transistor are formed using a transparent oxide conductor. A semiconductor layer of the pixel transistor is formed using the oxide semiconductor. The display portion wiring is formed using a transparent oxide conductor. | 01-20-2011 |
20110012117 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to reduce the manufacturing cost of a semiconductor device. An object is to improve the aperture ratio of a semiconductor device. An object is to make a display portion of a semiconductor device display a higher-definition image. An object is to provide a semiconductor device which can be operated at high speed. The semiconductor device includes a driver circuit portion and a display portion over one substrate. The driver circuit portion includes: a driver circuit TFT in which source and drain electrodes are formed using a metal and a channel layer is formed using an oxide semiconductor; and a driver circuit wiring formed using a metal. The display portion includes: a pixel TFT in which source and drain electrodes are formed using an oxide conductor and a semiconductor layer is formed using an oxide semiconductor; and a display wiring formed using an oxide conductor. | 01-20-2011 |
20110012118 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is to improve the aperture ratio of a semiconductor device. The semiconductor device includes a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate. The driver circuit includes a channel-etched thin film transistor for driver circuit and a driver circuit wiring formed using metal. Source and drain electrodes of the thin film transistor for the driver circuit are formed using a metal. A channel layer of the thin film transistor for the driver circuit is formed using an oxide semiconductor. The display portion includes a bottom-contact thin film transistor for a pixel and a display portion wiring formed using an oxide conductor. Source and drain electrode layers of the thin film transistor for the pixel are formed using an oxide conductor. A semiconductor layer of the thin film transistor for the pixel is formed using an oxide semiconductor. | 01-20-2011 |
20110017995 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is to increase the aperture ratio of a semiconductor device. The semiconductor device includes a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate. The driver circuit portion includes a channel-etched thin film transistor for a driver circuit, in which a source electrode and a drain electrode are formed using a metal and a channel layer is formed using an oxide semiconductor, and a driver circuit wiring formed using a metal. The display portion includes a channel protection thin film transistor for a pixel, in which a source electrode and a drain electrode are formed using an oxide conductor and a semiconductor layer is formed using an oxide semiconductor, and a display portion wiring formed using an oxide conductor. The thin film transistors provided in the semiconductor device are formed with a resist mask formed using a multi-tone mask. | 01-27-2011 |
20110019098 | DISPLAY DEVICE, DRIVING METHOD OF THE SAME AND ELECTRONIC DEVICE - A display device includes a pixel portion to which a non-inverted video signal is input in a first period and an inverted video signal is input in a second period, and a signal line driver circuit comprising a switch circuit portion for controlling output of the non-inverted video signal and the inverted video signal to the pixel portion. The switch circuit portion is controlled by a first signal serving as a first high power supply potential and a first low power supply potential in the first period and is controlled by a second signal serving as a second high power supply potential and a second low power supply potential in the second period, so that the switch circuit portion controls output of the non-inverted video signal and the inverted video signal to the pixel portion. | 01-27-2011 |
20110057925 | Light Emitting Device and Driving Method Thereof - According to a driving method of applying a reverse bias voltage, capacitance occurs due to a stacked structure of a conductor, an insulator and a conductor, or due to a structure of a TFT. This capacitance prevents normal operation. The invention provides a pixel configuration including at least a driving transistor for driving a light emitting element and a switching transistor for controlling the driving transistor, wherein the switching transistor is turned on in the case of applying a forward bias voltage after applying a reverse bias voltage. As a result, it is prevented that the potential changes due to unwanted capacitive coupling. | 03-10-2011 |
20110069805 | DRIVER CIRCUIT, DISPLAY DEVICE INCLUDING THE DRIVER CIRCUIT, AND ELECTRONIC APPLIANCE INCLUDING THE DISPLAY DEVICE - An object of the present invention is to provide a driver circuit including a normally-on thin film transistor, which driver circuit ensures a small malfunction and highly reliable operation. The driver circuit includes a static shift register including an inverter circuit having a first transistor and a second transistor, and a switch including a third transistor. The first to third transistors each include a semiconductor layer of an oxide semiconductor and are depletion-mode transistors. An amplitude voltage of clock signals for driving the third transistor is higher than a power supply voltage for driving the inverter circuit. | 03-24-2011 |
20110084960 | SHIFT REGISTER AND DISPLAY DEVICE - The shift register includes first to fourth flip-flops. A first clock signal which is in a first voltage state in a first period and in a second voltage state in second to fourth periods is input to the first flip-flop. A second clock signal which is in the first voltage state in the second period and in the second voltage state in the third period and the fourth period is input to the second flip-flop. A third clock signal which is in the second voltage state in the first, second, and fourth periods and in the first voltage state in the third period is input to the third flip-flop. A fourth clock signal which is in the second voltage state in the first and second periods and in the first voltage state in the fourth period is input to the fourth flip-flop. | 04-14-2011 |
20110089414 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An object is to reduce leakage current and parasitic capacitance of a transistor used for an LSI, a CPU, or a memory. A semiconductor integrated circuit such as an LSI, a CPU, or a memory is manufactured using a thin film transistor in which a channel formation region is formed using an oxide semiconductor which becomes an intrinsic or substantially intrinsic semiconductor by removing impurities which serve as electron donors (donors) from the oxide semiconductor and has larger energy gap than that of a silicon semiconductor. With use of a thin film transistor using a highly purified oxide semiconductor layer with sufficiently reduced hydrogen concentration, a semiconductor device with low power consumption due to leakage current can be realized. | 04-21-2011 |
20110089927 | VOLTAGE REGULATOR CIRCUIT - A transistor includes a gate, a source, and a drain, the gate is electrically connected to the source or the drain, a first signal is input to one of the source and the drain, and an oxide semiconductor layer whose carrier concentration is 5×10 | 04-21-2011 |
20110090204 | LIQUID CRYSTAL DISPLAY DEVICE AND ELECTRONIC APPARATUS HAVING THE SAME - A liquid crystal display device includes: a driver circuit portion; a pixel portion; a signal generation circuit for generating a control signal for driving the driver circuit portion and an image signal which is supplied to the pixel portion; a memory circuit; a comparison circuit for detecting a difference of image signals for a series of frame periods among image signals stored for respective frame periods in the memory circuit; a selection circuit which selects and outputs the image signals for the series of frame periods when the difference is detected in the comparison circuit; and a display control circuit which supplies the control signal and the image signals output from the selection circuit, to the driver circuit portion when the difference is detected in the comparison circuit, and stops supplying the control signal to the driver circuit portion when the difference is not detected in the comparison circuit. | 04-21-2011 |
20110090207 | DISPLAY DEVICE AND ELECTRONIC DEVICE INCLUDING DISPLAY DEVICE - Objects are to provide a display device the power consumption of which is reduced, to provide a self-luminous display device the power consumption of which is reduced and which is capable of long-term use in a dark place. A circuit is formed using a thin film transistor in which a highly-purified oxide semiconductor is used and a pixel can keep a certain state (a state in which a video signal has been written). As a result, even in the case of displaying a still image, stable operation is easily performed. In addition, an operation interval of a driver circuit can be extended, which results in a reduction in power consumption of a display device. Moreover, a light-storing material is used in a pixel portion of a self-luminous display device to store light, whereby the display device can be used in a dark place for a long time. | 04-21-2011 |
20110101331 | SEMICONDUCTOR DEVICE - An object is to reduce leakage current and parasitic capacitance of a transistor used for an LSI, a CPU, or a memory. A semiconductor integrated circuit included in an LSI, a CPU, or a memory is manufactured using the transistor which is formed using an oxide semiconductor which is an intrinsic or substantially intrinsic semiconductor obtained by removal of impurities which serve as electron donors (donors) from the oxide semiconductor and has larger energy gap than a silicon semiconductor, and is formed over a semiconductor substrate. With the transistor which is formed over the semiconductor substrate and includes the highly purified oxide semiconductor layer with sufficiently reduced hydrogen concentration, a semiconductor device whose power consumption due to leakage current is low can be realized. | 05-05-2011 |
20110108837 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An object of an embodiment of the present invention is to manufacture a semiconductor device with high display quality and high reliability, which includes a pixel portion and a driver circuit portion capable of high-speed operation over one substrate, using transistors having favorable electric characteristics and high reliability as switching elements. Two kinds of transistors, in each of which an oxide semiconductor layer including a crystalline region on one surface side is used as an active layer, are formed in a driver circuit portion and a pixel portion. Electric characteristics of the transistors can be selected by choosing the position of the gate electrode layer which determines the position of the channel. Thus, a semiconductor device including a driver circuit portion capable of high-speed operation and a pixel portion over one substrate can be manufactured. | 05-12-2011 |
20110109351 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An oxide semiconductor layer which is intrinsic or substantially intrinsic and includes a crystalline region in a surface portion of the oxide semiconductor layer is used for the transistors. An intrinsic or substantially intrinsic semiconductor from which an impurity which is to be an electron donor (donor) is removed from an oxide semiconductor and which has a larger energy gap than a silicon semiconductor is used. Electrical characteristics of the transistors can be controlled by controlling the potential of a pair of conductive films which are provided on opposite sides from each other with respect to the oxide semiconductor layer, each with an insulating film arranged therebetween, so that the position of a channel formed in the oxide semiconductor layer is determined. | 05-12-2011 |
20110122121 | SEMICONDUCTOR DEVICE - The present invention provides a semiconductor device in which a power line is not affected by noise due to a voltage drop caused by instantaneous high-current consumption in the buffer portion and that has no possibility that a logic portion malfunctions. In a case where the same potential is supplied to a logic portion and a buffer portion, by a method in which separate FPC terminals are used for the logic portion and the buffer portion, or by a method in which the FPC terminal is shared but a power line is branched for the logic portion and the buffer portion at a point close to the FPC terminal, a problem that the logic portion is affected by noise generated by a voltage drop of the power line due to instantaneous high-current consumption in the buffer portion can be prevented. | 05-26-2011 |
20110148826 | METHOD FOR DRIVING LIQUID CRYSTAL DISPLAY DEVICE - The liquid crystal display device includes a first substrate provided with a terminal portion, a switching transistor, a driver circuit portion, and a pixel circuit portion including a pixel transistor and a plurality of pixels, a second substrate provided with a common electrode electrically connected to the terminal portion through the switching transistor, and liquid crystal between a pixel electrode and the common electrode. In a period during which a still image is switched to a moving image, the following steps are sequentially performed: a first step of supplying the common potential to the common electrode; a second step of supplying a power supply voltage to the driver circuit portion; a third step of supplying a clock signal to the driver circuit portion; and a fourth step of supplying a start pulse signal to the driver circuit portion. | 06-23-2011 |
20110156025 | MEMORY DEVICE AND SEMICONDUCTOR DEVICE - It is an object to provide a memory device whose power consumption can be suppressed and a semiconductor device including the memory device. As a switching element for holding electric charge accumulated in a transistor which functions as a memory element, a transistor including an oxide semiconductor film as an active layer is provided for each memory cell in the memory device. The transistor which is used as a memory element has a first gate electrode, a second gate electrode, a semiconductor film located between the first gate electrode and the second gate electrode, a first insulating film located between the first gate electrode and the semiconductor film, a second insulating film located between the second gate electrode and the semiconductor film, and a source electrode and a drain electrode in contact with the semiconductor film. | 06-30-2011 |
20110157131 | METHOD FOR DRIVING LIQUID CRYSTAL DISPLAY DEVICE - An object is to suppress deterioration of a displayed image even when a refresh rate is reduced in displaying a still image. A liquid crystal display device includes a pixel transistor electrically connected to a pixel electrode, and a capacitor having one electrode electrically connected to the pixel electrode and the other electrode electrically connected to a capacitor line. The pixel transistor is turned on and a voltage based on an image signal is supplied to the pixel electrode, and then, the pixel transistor is turned off so that a holding period during which the pixel electrode holds the voltage based on the image signal starts. A holding signal corresponding to change of the voltage based on the image signal in the pixel electrode in the holding period is supplied to the capacitor line so that a potential of the pixel electrode is constant. | 06-30-2011 |
20110175873 | METHOD FOR DRIVING LIQUID CRYSTAL DISPLAY DEVICE - In an image signal writing period, a first image signal is supplied to a first liquid crystal element and a first capacitor from a first signal line. In a backlight lighting period, display is performed in a light-transmitting pixel portion in response to the first image signal. In a black grayscale signal writing period, a signal for black display is supplied to a second liquid crystal element and a second capacitor from a second signal line. In a still image signal writing period, a second image signal is supplied to the first liquid crystal element, the first capacitor, the second liquid crystal element, and the second capacitor from the first signal line. In a still image signal holding period, display is performed in the reflective pixel portion in response to the second image signal. | 07-21-2011 |
20110175941 | METHOD FOR DRIVING LIQUID CRYSTAL DISPLAY DEVICE - In an image signal writing period, a first image signal is supplied to a first liquid crystal element and a first capacitor from a signal line. In a backlight lighting period, display is performed in a light-transmitting pixel portion in response to the first image signal. In a black grayscale signal writing period, a signal for black display is supplied to a second liquid crystal element and a second capacitor from the signal line in the reflective pixel portion. In a still image signal writing period, a second image signal is supplied to the first liquid crystal element, the first capacitor, the second liquid crystal element, and the second capacitor from the signal line. In a still image signal holding period, display is performed in the reflective pixel portion in response to the second image signal. | 07-21-2011 |
20110187758 | METHOD FOR DRIVING LIQUID CRYSTAL DISPLAY DEVICE - In a liquid crystal display device capable of displaying a moving image and a still image, a reduction in contrast due to light scattering in a reflective pixel portion or the like is suppressed and consumed power is reduced. As a driving method of a transflective liquid crystal display device including a plurality of pixels each including a plurality of light-transmitting pixel portions and a reflective pixel portion, an image signal for color display is supplied to the plurality of light-transmitting pixel portions and a signal for black display is supplied to the reflective pixel portion in a moving-image display period, and an image signal of black-and-white grayscale is supplied to the plurality of light-transmitting pixel portions and the reflective pixel portion in a still-image display period. | 08-04-2011 |
20110193622 | PULSE OUTPUT CIRCUIT, SHIFT REGISTER, AND DISPLAY DEVICE - An object is to suppress change of a threshold voltage of a transistor in a shift register and to prevent the transistor from malfunctioning during a non-selection period. A pulse output circuit provided in the shift register regularly supplies a potential to a gate electrode of a transistor which is in a floating state so that the gate electrode is turned on during a non-selection period when a pulse is not outputted. In addition, supply of a potential to the gate electrode of the transistor is performed by turning on or off another transistor regularly. | 08-11-2011 |
20110199404 | LIQUID CRYSTAL DISPLAY DEVICE AND ELECTRONIC DEVICE - It is an object to suppress deterioration of a displayed still image which is caused when a refresh rate is reduced. A liquid crystal display device includes a display portion controlled by a driver circuit and a timing controller for controlling the driver circuit. An image signal for displaying a still image is supplied to the timing controller. By the timing controller, a refresh rate in displaying an image corresponding to an image signal on the display portion reduced as a gray level number of the image signal is smaller. | 08-18-2011 |
20110205254 | LIQUID CRYSTAL DISPLAY DEVICE AND ELECTRONIC DEVICE - To suppress deterioration of quality of a still image displayed with a reduced refresh rate. A liquid crystal display device includes a display portion that is controlled by a driver circuit and includes normally white mode (or normally black mode) liquid crystals, and a timing controller for controlling the driver circuit. The timing controller is supplied with an image signal for displaying a moving image and an image signal for displaying a still image. The absolute value of a voltage applied to the liquid crystals in order to express black (or white) in an image corresponding to the image signal for displaying the still image is larger than that of a voltage applied to the liquid crystals in order to express black (or white) in an image corresponding to the image signal for displaying the moving image. | 08-25-2011 |
20110216875 | PULSE SIGNAL OUTPUT CIRCUIT AND SHIFT REGISTER - A pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit are provided. A clock signal is supplied to one of transistors connected to a first output terminal. A power supply potential is applied to one of transistors connected to a second output terminal. Thus, power consumed by discharge and charge of the transistor included in the second output terminal can be reduced. Further, since a potential is supplied from a power source to the second output terminal, sufficient charge capability can be obtained. | 09-08-2011 |
20110216876 | PULSE SIGNAL OUTPUT CIRCUIT AND SHIFT REGISTER - An object is to provide a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit. A pulse signal output circuit according to one embodiment of the disclosed invention includes first to tenth transistors. The ratio W/L of the channel width W to the channel length L of the first transistor and W/L of the third transistor are each larger than W/L of the sixth transistor. W/L of the fifth transistor is larger than W/L of the sixth transistor. W/L of the fifth transistor is equal to W/L of the seventh transistor. W/L of the third transistor is larger than W/L of the fourth transistor. With such a structure, a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit can be provided. | 09-08-2011 |
20110220983 | METHOD FOR DELETING DATA FROM NAND TYPE NONVOLATILE MEMORY - To provide a method of releasing charges which have been injected into charge accumulating layers of nonvolatile memory elements without using a substrate terminal such as a p well or an n well, as a method for deleting data from a NAND-type nonvolatile memory. In the method for deleting data from the NAND-type nonvolatile memory, charges stored in a charge accumulating layer of a first nonvolatile memory element are released by applying a first potential to a bit line and a source line, a second potential to a control gate of the first nonvolatile memory element, and a third potential which is different from the second potential to a control gate of a second nonvolatile memory element. | 09-15-2011 |
20110221734 | DISPLAY DEVICE - To provide a display device in which rewriting of only a given section of an image can be achieved or to simplify the configuration of a circuit including wirings in a display device in which partial driving can be performed. A shift of a selection signal in a shift register included in a scan line driver circuit and supply of a selection signal to scan lines are controlled independently of each other, so that rewriting of only a given section of an image can be achieved. The above operation is realized by providing a wiring that supplies a signal representing a clock signal or a fixed potential. Therefore, the configuration of the circuit including the wiring can be simplified in the display device including the wiring while partial driving can be performed. | 09-15-2011 |
20110233553 | DISPLAY DEVICE, METHOD FOR MANUFACTURING THE SAME, AND ELECTRONIC DEVICE HAVING THE SAME - In a case where a p-channel thin film transistor is used as a thin film transistor that is electrically connected to a light-emitting element and drives the light-emitting element, a value of cutoff current of the p-channel thin film transistor is made lower than that of a p-channel thin film transistor of a driver circuit. Specifically, channel doping is selectively performed on a semiconductor layer of a thin film transistor included in a pixel. | 09-29-2011 |
20110248266 | TRANSISTOR - An object is to provide a transistor having a novel electrode structure capable of substantially maintaining on-state current while parasitic capacitance generated in an overlap portion between a source electrode layer (a drain electrode layer) and a gate electrode layer is reduced. Parasitic capacitance is reduced by using a source electrode layer and a drain electrode in a comb shape in a transistor. Curved current flowing from side edges of electrode tooth portions can be generated by controlling the width of an end of a comb-shaped electrode layer or the interval between the electrode tooth portions. This curved current compensates for a decrease in linear current due to a comb electrode shape; thus, on-state current can be kept unchanged even when parasitic capacitance is reduced. | 10-13-2011 |
20110248970 | LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR DRIVING THE SAME - In the liquid crystal display device, image signals are concurrently supplied to pixels provided in a plurality of rows among pixels arranged in matrix in a pixel portion where input of image signals is controlled by transistors including polycrystalline semiconductors or single crystal semiconductors in channel formation regions. Thus, the image quality of the liquid crystal display device can be improved. | 10-13-2011 |
20110248978 | LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR DRIVING THE SAME - To increase the frequency of input of image signals in terms of design in a field-sequential liquid crystal display device. Image signals are concurrently supplied to pixels provided in a plurality of rows among pixels arranged in matrix in a pixel portion of the liquid crystal display device. Thus, the frequency of input of an image signal to each pixel can be increased without change in response speed of a transistor or the like included in the liquid crystal display device. | 10-13-2011 |
20110249037 | LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR DRIVING THE SAME - In a liquid crystal display device, image signals are concurrently supplied to pixels provided in a plurality of rows among pixels arranged in matrix in a pixel portion where input of image signals is controlled by transistors including amorphous semiconductors or microcrystalline semiconductors in channel formation regions. Thus, the frequency of input of image signals to each pixel can be increased without changing the response speed of the transistors or the like included in the liquid crystal display device. | 10-13-2011 |
20110260169 | DISPLAY DEVICE AND ELECTRONIC DEVICE - An object of the invention is to provide a circuit technique which enables reduction in power consumption and high definition of a display device. A switch controlled by a start signal is provided to a gate electrode of a transistor, which is connected to a gate electrode of a bootstrap transistor. When the start signal is input, a potential is supplied to the gate electrode of the transistor through the switch, and the transistor is turned off. The transistor is turned off, so that leakage of a charge from the gate electrode of the bootstrap transistor can be prevented. Accordingly, time for storing a charge in the gate electrode of the bootstrap transistor can be shortened, and high-speed operation can be performed. | 10-27-2011 |
20110266564 | SEMICONDUCTOR DISPLAY DEVICE - A semiconductor display device using a light-emitting element, which can suppress luminance unevenness among pixels due to the potential drop of a wiring, is provided. Power supply lines to which a power supply potential is supplied are electrically connected to each other in a display region where a plurality of pixels are arranged. Further, an interlayer insulating film is formed over a wiring (an auxiliary power supply line) for electrically connecting the power supply lines to each other in the display region and a gate electrode of a transistor included in a pixel; and the power supply lines are formed over the interlayer insulating film which is formed over the auxiliary power supply line and the gate electrode. Furthermore, a wiring (an auxiliary wiring) formed over the interlayer insulating film is electrically or directly connected to the auxiliary power supply line. | 11-03-2011 |
20110279427 | LIQUID CRYSTAL DISPLAY DEVICE AND ELECTRONIC APPLIANCE - An object of one embodiment of the present invention is to provide a liquid crystal display device using the common inversion driving that allows the amplitude voltage of a scan signal on a scan line to be low. The device including a first transistor having a gate, a first terminal, and a second terminal electrically connected to a scan line, a signal line, and a first electrode of a liquid crystal element, respectively; and a second transistor having a gate, a first terminal, and a second terminal electrically connected to the scan line, a common potential line, and a second electrode of the element, respectively. An image signal is supplied from the signal line to the first electrode to subject the element to inversion driving. A common potential is supplied from the common potential line to the second electrode in synchronization with supply of the image signal. | 11-17-2011 |
20110285675 | PULSE OUTPUT CIRCUIT, SHIFT REGISTER, AND DISPLAY DEVICE - In a pulse output circuit in a shift register, a power source line which is connected to a transistor in an output portion connected to a pulse output circuit at the next stage is set to a low-potential drive voltage, and a power source line which is connected to a transistor in an output portion connected to a scan signal line is set to a variable potential drive voltage. The variable potential drive voltage is the low-potential drive voltage in a normal mode, and can be either a high-potential drive voltage or the low-potential drive voltage in a bath mode. In the batch mode, display scan signals can be output to a plurality of scan signal lines at the same timing in a batch. | 11-24-2011 |
20110285687 | LIQUID CRYSTAL DISPLAY DEVICE AND ELECTRONIC DEVICE - To reduce the amplitude voltage of a scan signal of a scan line in common inversion driving. A liquid crystal display device includes a first transistor including a gate electrically connected to a first scan line, a first terminal electrically connected to a signal line, and a second terminal electrically connected to a first electrode of a liquid crystal element, and a second transistor including a gate electrically connected to a second scan line, a first terminal electrically connected to the signal line, and a second terminal electrically connected to a second electrode of the liquid crystal element. The signal line supplies a video signal for the inversion driving of the liquid crystal element to the first electrode through the first transistor and a common potential for the inversion driving of the liquid crystal element to the second electrode through the second transistor. | 11-24-2011 |
20110285688 | LIQUID CRYSTAL DISPLAY DEVICE - In a liquid crystal display device, amplitude voltage of an image signal written into a signal line can be decreased. A liquid crystal display device in which frame inversion driving is performed includes pixels each including a liquid crystal element and a transistor that controls voltage applied to a first electrode of the liquid crystal element. A scan line is electrically connected to gates of transistors in pixels in a corresponding row. A common line is electrically connected to second electrodes of liquid crystal elements in pixels in the corresponding row. In a first frame period, a first potential is sequentially supplied to the common lines in synchronization with sequential selection of the scan lines. In a second frame period adjacent to the first frame period, a second potential different from the first potential is sequentially supplied to the common lines in synchronization with sequential selection of the scan lines. | 11-24-2011 |
20110292088 | LIQUID CRYSTAL DISPLAY DEVICE AND DRIVING METHOD THEREOF - A liquid crystal display device capable of performing image signal writing and display with a field-sequential method in parallel, with a simple pixel configuration. In the liquid crystal display device, image signal writing to pixels in a row can be followed by image signal writing to pixels in a row which is separate from the row by at least two rows. Therefore, in the liquid crystal display device, image signal writing and lighting of the backlights are not performed per pixel portion but can be performed per unit region of the pixel portion. Accordingly, image signal writing and lighting of the backlight can be performed in parallel in the liquid crystal display device. | 12-01-2011 |
20110299003 | DISPLAY DEVICE AND ELECTRONIC DEVICE - An object is to provide a display device in which a difference in load capacitance between wirings is reduced in the case where different signals are supplied to plural pixels at the same timing with use of plural wirings; thus, deviation in the grayscale and/or signal delay can be reduced. The display device includes first to N-th (N is a natural number of 3 or larger) data lines for supplying different video signals; and a pixel including a selection transistor connected to one of the first to N-th data lines. The first to N-th data lines intersect with each other so that one of the first to N-th data lines is provided closest to one terminal of the selection transistor and connected to the one terminal of the selection transistor. | 12-08-2011 |
20120001881 | DRIVING METHOD OF LIQUID CRYSTAL DISPLAY DEVICE - An object is to provide a driving method of a liquid crystal display device with a low power consumption and a high image quality. A pixel includes a liquid crystal element and a transistor which controls supply of an image signal to the liquid crystal element. The transistor includes, in a channel formation region, a semiconductor which has a wider band gap than a silicon semiconductor and has a lower intrinsic carrier density than silicon, and has an extremely low off-state current. In inversion driving of pixels, image signals having opposite polarities are input to a pair of signal lines between which a pixel electrode is disposed. By employing such a structure, the quality of the displayed image can be increased even in the absence of a capacitor in the pixel. | 01-05-2012 |
20120001954 | LIQUID CRYSTAL DISPLAY DEVICE - A liquid crystal display device comprising a backlight and a pixel portion including first to 2n-th scan lines, wherein, in a first case of expressing a color image, first pixels controlled by the first to n-th scan lines are configured to express a first image using at least one of first to third hues supplied in a first rotating order, and second pixels controlled by the (n+1)-th to 2n-th scan lines are configured to express a second image using at least one of the first to third hues supplied in a second rotating order, wherein, in a second case of expressing a monochrome image, the first and second pixels controlled by the first to 2n-th scan lines are configured to express the monochrome image by external light reflected by the reflective pixel electrode, and wherein the first rotating order is different from the second rotating order. | 01-05-2012 |
20120001955 | LIQUID CRYSTAL DISPLAY DEVICE - The liquid crystal display device includes a pixel portion including first and second regions and light sources. The first and second regions each include a liquid crystal element whose transmissivity is controlled in accordance with a voltage of an image signal and a transistor for controlling holding of the voltage, whose off-state current is extremely low. The light sources perform first and second drivings: lights whose hues are different from each other are sequentially supplied to the first region in a first rotating order and the lights are sequentially supplied to the second region in a second rotating order which is different from the first rotating order in the first driving; and a light having a single hue is supplied consecutively to one or both of the first and second regions in the second driving. The period for holding the voltage is different between the first and second drivings. | 01-05-2012 |
20120002127 | LIQUID CRYSTAL DISPLAY DEVICE - An object is to provide a liquid crystal display device capable of image display according to an environment around the liquid crystal display device, e.g., in a bright environment or a dim environment. Another object is to provide a liquid crystal display device capable of displaying an image in both modes of a reflective mode in which external light is used as a light source and a transmissive mode in which a backlight is used. In order to achieve at least one of the above objects, a liquid crystal display device is provided with a region (a reflective region) where display is performed with reflection of incident light through a liquid crystal layer and a region (a transmissive region) where display is performed with transmission of light from a backlight and can switch the transmissive mode and the reflective mode. In the case where a full-color image is displayed, a pixel portion includes at least a first region and a second region, a plurality of lights of different hues are sequentially supplied to the first region according to a first order, and a plurality of lights of different hues are also sequentially supplied to the second region according to a second order which is different from the first order. | 01-05-2012 |
20120032606 | Light-Emitting Device - The amplitude of a potential of a signal line is decreased and a scan line driver circuit is prevented from being excessively loaded. A light-emitting device includes a light-emitting element; a first power supply line having a first potential; a second power supply line having a second potential; a first transistor for controlling a connection between the first power supply line and the light-emitting element; a second transistor, which is controlled in accordance with a video signal, whether outputting the second potential applied from the second power supply line or not; a switching element for selecting either the first potential applied from the first power supply line or the output of the second transistor; and a third transistor for selecting whether the first potential or the output of the second transistor which is selected by the switch is applied to a gate of the first transistor. | 02-09-2012 |
20120032942 | LIQUID CRYSTAL DISPLAY DEVICE AND DRIVING METHOD OF THE SAME - Provided is a liquid crystal display device having a pixel including a transistor and a liquid crystal element and a protection circuit electrically connected to one of a source and a drain of the transistor through a data line. The protection circuit includes a first terminal supplied with a first power supply potential and a second terminal supplied with a second power supply potential higher than the first power supply potential. In a moving image display mode, an image signal is input from the data line to the liquid crystal element through the transistor, and the first power supply potential is set at the first potential. In a still image display mode, supply of the image signal is stopped, and the first power supply potential is set at the second potential. The second potential is substantially the same as the minimum value of the image signal. | 02-09-2012 |
20120032996 | DRIVING METHOD OF LIQUID CRYSTAL DISPLAY DEVICE - In the first range of a screen, an image signal is input to a plurality of pixels arranged in the first region, and next an image signal is input to a plurality of pixels arranged in the second region that is adjacent to one side of the first region, and light of the first color is delivered every time the input of the image signal is finished. Further, in the second range, an image signal is input to a plurality of pixels arranged in a fourth region; next, an image signal is input to a plurality of pixels arranged in a third region adjacent to the other side of the fourth region, and light of a second color is delivered every time the input of the image signal is finished. | 02-09-2012 |
20120037932 | Display Device and Driving Method of the Same - A problem in that a light emitting element slightly emits light is solved by an off current of a thin film transistor connected in series to the light emitting element, thereby a display device which can perform a clear display by increasing contrast, and a driving method thereof are provided. When the thin film transistor connected in series to the light emitting element is turned off, a charge held in the capacitance of the light emitting element itself is discharged. Even when an off current is generated at the thin film transistor connected in series to the light emitting element, this off current charges this capacitance until the capacitance of the light emitting element itself holds a predetermined voltage again. Accordingly, the off current of the thin film transistor does not contribute to light emission. In this manner, a slight light emission of the light emitting element can be reduced. | 02-16-2012 |
20120056860 | DISPLAY DEVICE - To suppress fluctuation in the threshold voltage of a transistor, to reduce the number of connections of a display panel and a driver IC, to achieve reduction in power consumption of a display device, and to achieve increase in size and high definition of the display device. A gate electrode of a transistor which easily deteriorates is connected to a wiring to which a high potential is supplied through a first switching transistor and a wiring to which a low potential is supplied through a second switching transistor; a clock signal is input to a gate electrode of the first switching transistor; and an inverted clock signal is input to a gate electrode of the second switching transistor. Thus, the high potential and the low potential are alternately applied to the gate electrode of the transistor which easily deteriorates. | 03-08-2012 |
20120061665 | LIQUID CRYSTAL DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - A photolithography step and an etching step for forming an island-shaped semiconductor layer is omitted, and a liquid crystal display device is manufactured through the following four photolithography steps: a step for forming a gate electrode (including a wiring or the like formed from the same layer), a step for forming a source electrode and a drain electrode (including a wiring or the like formed from the same layer), a step for forming a contact hole (including removal of an insulating layer or the like in a region other than the contact hole), and a step for forming a pixel electrode (including a wiring or the like formed from the same layer). In the step of forming the contact hole, a groove portion in which the semiconductor layer is removed is formed, so that formation of parasitic channels is prevented. | 03-15-2012 |
20120061666 | SEMICONDUCTOR DEVICE AND DISPLAY DEVICE - A semiconductor device including a first gate electrode and a second gate electrode formed apart from each other over an insulating surface, an oxide semiconductor film including a region overlapping with the first gate electrode with a gate insulating film interposed therebetween, a region overlapping with the second gate electrode with the gate insulating film interposed therebetween, and a region overlapping with neither the first gate electrode nor the second gate electrode, and an insulating film covering the gate insulating film, the first gate electrode, the second gate electrode, and the oxide semiconductor film, and being in direct contact with the oxide semiconductor film is provided. | 03-15-2012 |
20120061677 | SEMICONDUCTOR DEVICE - To provide a semiconductor device including a transistor formed using a highly reliable oxide semiconductor. To provide a semiconductor device which can be manufactured with high productivity and high yield by reducing the number of photolithography steps. The semiconductor device includes a first wiring, a second wiring, and a third wiring whose potential is lower than those of the first wiring and the second wiring between the first wiring and the second wiring. In the semiconductor device, the first wiring is electrically connected to the third wiring through a first transistor in which a gate electrode layer is electrically connected to a source electrode layer, the second wiring is electrically connected to the third wiring through a second transistor in which the gate electrode layer is electrically connected to the source electrode layer, and a continuous oxide semiconductor film used for a semiconductor region of the first transistor and the second transistor is provided above or below the first wiring, the second wiring, and the third wiring. | 03-15-2012 |
20120062614 | METHOD FOR DRIVING LIQUID CRYSTAL DISPLAY DEVICE - The image quality of a liquid crystal display device that can display stereoscopic images is improved without the decrease in resolution. In a method for driving a liquid crystal display device that displays stereoscopic images by a wavelength division method, a first image seen with left eye and a second image seen with right eye are displayed using R, G, and B whose wavelength bands are different from each other by a field-sequential method. In the field-sequential method, writing of video signals and lighting of a backlight are sequentially performed not in the entire pixel portion but in each given region of the pixel portion. | 03-15-2012 |
20120062811 | LIQUID CRYSTAL DISPLAY DEVICE - An object of the present invention is to provide a liquid crystal display device which allows a desirable storage capacitor to be ensured in a pixel without decreasing the aperture ratio in response to changes in frame frequency. In a liquid crystal display device including a pixel transistor and two capacitive elements using an oxide semiconductor material in each pixel, one of the capacitive elements comprises a light-transmitting material to improve the aperture ratio of the pixel. Furthermore, through the use of characteristics of the light-transmitting capacitive element, the size of the storage capacitor in the pixel is varied by adjusting the voltage value of a capacitance value in response to the frame frequency varied depending on images displayed. | 03-15-2012 |
20120064650 | MANUFACTURING METHOD OF THIN FILM TRANSISTOR AND LIQUID CRYSTAL DISPLAY DEVICE - Etching of a semiconductor layer including a part over a gate wiring and formation of a contact hole for connection between a pixel electrode and a drain electrode are performed by one-time photolithography step and one-time etching step; thus, the number of photolithography steps is reduced. The exposed part of the gate wiring is covered by an insulating layer, and this insulating layer also functions as a spacer for maintaining a space for a liquid crystal layer. By the reduction in the number of photolithography steps, a liquid crystal display device can be provided at lower cost and higher productivity. Using an oxide semiconductor for the semiconductor layer can realize a liquid crystal display device with low power consumption and high reliability. | 03-15-2012 |
20120105415 | LIGHT EMITTING DEVICE - Power consumption required for charging and discharging a source signal line is reduced in an active matrix EL display device. A bipolar transistor (Bi | 05-03-2012 |
20120127384 | DRIVING METHOD OF STEREOSCOPIC IMAGE DISPLAY DEVICE - A display device capable of high-quality stereoscopic display without decreasing resolution is provided. A pixel portion including a plurality of pixels arranged in matrix is divided into plural regions, lighting of backlight units each emitting light of different hues is controlled in each region, and the backlight units of the plural regions are turned off simultaneously at a regular interval so as to display black. The right-eye image and the left-eye image are alternately displayed with black display interposed therebetween, and light incident on the right eye of a viewer is blocked when a left-eye image is displayed, and light incident on the left eye of the viewer is blocked when a right-eye image is displayed. An image signal is written into a pixel in a black display period during which the backlight units are turned off. | 05-24-2012 |
20120162283 | DRIVING METHOD OF LIQUID CRYSTAL DISPLAY DEVICE - Input of image signals to part of a plurality of pixels included in a particular region of a pixel portion and supply of light to part of another plurality of pixels which is different from the part are performed concurrently. Therefore, it is not necessary to provide a period in which light is supplied to all of the plurality of pixels included in the region after the image signals are input thereto. In other words, it is possible to start input of the next image signals to all of the plurality of pixels included in the region just after the image signals are input thereto. Accordingly, it is possible to increase the input frequency of the image signals. As a result, it is possible to suppress deteriorations of display caused in the field-sequential liquid crystal display device. | 06-28-2012 |
20120218325 | DISPLAY DEVICE - To extend the range of distance (between a display screen and the eye of a viewer) with which the viewer can see 3D images with the naked eye and to reduce power consumption. A parallax barrier in a shutter panel is controlled to be arranged optimally in accordance with the distance between the viewer and a display panel. Specifically, an optimal parallax barrier is formed as appropriate by selectively switching a light-transmitting state and a light-shielding state of a plurality of optical shutter regions and a display element unit of pixels depending on a retention state. The retention state is realized in such a manner that at least one of electrodes between which a liquid crystal layer is sandwiched is connected to a transistor including a semiconductor layer containing an oxide semiconductor and the transistor is turned off. | 08-30-2012 |
20120242723 | DISPLAY DEVICE AND DRIVING METHOD OF THE SAME - In a display device in which a shape of a parallax barrier is changed depending on the relative positional relation to the viewer, the occurrence of crosstalk is suppressed. Images are displayed in a part of a plurality of sub-pixels included in each pixel, and images are not displayed in the other sub-pixels. That is, a display area in the pixel is reduced. Thus, the occurrence of crosstalk can be suppressed. Further, sub-pixels have a square shape or a substantially square shape. Thus, even when sub-pixels which display images are selected depending on the relative positional relation to the viewer, the shape of the display area in the pixel does not change greatly. Therefore, even in the case where the positional relationship is changed (in the case where the arranged parallax barrier is changed), the occurrence of crosstalk can be suppressed without respect to the positional relationship. | 09-27-2012 |
20120274361 | COMPARATOR AND SEMICONDUCTOR DEVICE INCLUDING COMPARATOR - A chopper comparator with a novel structure is provided. The comparator includes an inverter, a capacitor, a first switch, a second switch, and a third switch. An input terminal and an output terminal of the inverter are electrically connected to each other through the first switch. The input terminal of the inverter is electrically connected to one of a pair of electrodes of the capacitor. A reference potential is applied to the other of the pair of electrodes of the capacitor through the second switch. A signal potential input is applied to the other of the pair of electrodes of the capacitor through the third switch. A potential output from the output terminal of the inverter is an output signal. A transistor whose channel is formed in an oxide semiconductor layer is used as the first switch. | 11-01-2012 |
20120280725 | DRIVER CIRCUIT, DISPLAY DEVICE INCLUDING THE DRIVER CIRCUIT, AND ELECTRONIC APPLIANCE INCLUDING THE DISPLAY DEVICE - An object of the present invention is to provide a driver circuit including a normally-on thin film transistor, which driver circuit ensures a small malfunction and highly reliable operation. The driver circuit includes a static shift register including an inverter circuit having a first transistor and a second transistor, and a switch including a third transistor. The first to third transistors each include a semiconductor layer of an oxide semiconductor and are depletion-mode transistors. An amplitude voltage of clock signals for driving the third transistor is higher than a power supply voltage for driving the inverter circuit. | 11-08-2012 |
20120286263 | Semiconductor Device and Method of Manufacturing the Same - It is an object to form a buffer circuit, an inverter circuit, or the like using only n-channel TFTs including an oxide semiconductor layer. A buffer circuit, an inverter circuit, or the like is formed by combination of a first transistor in which a source electrode and a drain electrode each overlap with a gate electrode and a second transistor in which a source electrode overlaps with a gate electrode and a drain electrode does not overlap with the gate electrode. Since the second transistor has such a structure, the capacitance C | 11-15-2012 |
20120287024 | METHOD FOR DRIVING DISPLAY DEVICE - In a display device using a light-emitting element or the like, the power consumption is reduced without reducing the display quality. A first operation and a second operation are carried out. In the first operation, a threshold voltage of a transistor is held in a capacitor. In the second operation, a signal potential corresponding to an image signal and the threshold voltage are added with the use of a capacitive coupling by the capacitor and are input to a gate of the transistor, so that a drain current of the transistor flows into a load element. The first operation is carried out once in a plurality of frames. A switch that determines whether the capacitor is electrically connected to a wiring to which a power supply potential is input is provided. A transistor in which a channel is formed in an oxide semiconductor layer is used as the switch. | 11-15-2012 |
20120287025 | ACTIVE MATRIX DISPLAY DEVICE AND DRIVING METHOD THEREOF - In a circuit in FIG. | 11-15-2012 |
20120287177 | METHOD FOR DRIVING LIGHT-EMITTING DEVICE - A method for driving a light-emitting device comprises steps of: supplying a first potential to a drain of a transistor and a second potential being lower than the first potential to a cathode of a light-emitting element; supplying a third potential which is lower than a potential obtained by adding the threshold voltage of the transistor, the threshold voltage of the light-emitting element, and the second potential to a gate electrode of the transistor, and a fourth potential being lower than a potential obtained by subtracting the threshold voltage of the transistor from the third potential to the source of the transistor; stopping supply of the fourth potential to the source of the transistor; and supplying a potential of an image signal to the gate electrode of the transistor. | 11-15-2012 |
20120298990 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is to increase an aperture ratio of a semiconductor device. The semiconductor device includes a driver circuit portion and a display portion (also referred to as a pixel portion) over one substrate. The driver circuit portion includes a channel-etched thin film transistor for a driver circuit, in which a source electrode and a drain electrode are formed using metal and a channel layer is formed of an oxide semiconductor, and a driver circuit wiring formed using metal. The display portion includes a channel protection thin film transistor for a pixel, in which a source electrode layer and a drain electrode layer are formed using an oxide conductor and a semiconductor layer is formed of an oxide semiconductor, and a display portion wiring formed using an oxide conductor. | 11-29-2012 |
20120300151 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An aperture ratio of a semiconductor device is improved. A driver circuit and a pixel are provided over one substrate, and a first thin film transistor in the driver circuit and a second thin film transistor in the pixel each include a gate electrode layer, a gate insulating layer over the gate electrode layer, an oxide semiconductor layer over the gate insulating layer, source and drain electrode layers over the oxide semiconductor layer, and an oxide insulating layer in contact with part of the oxide semiconductor layer over the gate insulating layer, the oxide semiconductor layer, and the source and drain electrode layers. The gate electrode layer, the gate insulating layer, the oxide semiconductor layer, the source and drain electrode layers, and the oxide insulating layer of the second thin film transistor each have a light-transmitting property. | 11-29-2012 |
20120319107 | LIQUID CRYSTAL DISPLAY DEVICE - An object of the present invention is to provide a liquid crystal display device which allows a desirable storage capacitor to be ensured in a pixel without decreasing the aperture ratio in response to changes in frame frequency. In a liquid crystal display device including a pixel transistor and two capacitive elements using an oxide semiconductor material in each pixel, one of the capacitive elements comprises a light-transmitting material to improve the aperture ratio of the pixel. Furthermore, through the use of characteristics of the light-transmitting capacitive element, the size of the storage capacitor in the pixel is varied by adjusting the voltage value of a capacitance value in response to the frame frequency varied depending on images displayed. | 12-20-2012 |
20120326951 | Display Device - To provide a display device with little signal delay and a display device that can operate with low power consumption, parasitic capacitance between a common wiring that applies a common potential to a plurality of pixels and signal lines that input signals for driving the pixels is avoided. Specifically, the common wiring is routed outwardly with respect to an external input terminal to which a signal is input from the, outside, to avoid intersections of the signal lines and the common wiring. Thus, parasitic capacitance between the common wiring and the signal lines is avoided, so that the display device can operate at high speed with low power consumption. | 12-27-2012 |
20130009940 | DISPLAY DEVICE - The occurrence of crosstalk in a display device which performs 3D display is suppressed. When 3D display is performed, part of a plurality of pixels perform desired color display and the other part of the plurality of pixels perform black display. Thus, as compared to the case where all of a plurality of pixels perform desired color display, the occurrence of crosstalk can be suppressed. A plurality of pixels which perform desired color display are changed depending on the display state. Therefore, as compared to the case where a plurality of pixels which perform desired color display are fixed when 3D display is performed, the display device can have a longer period until display change in a pixel becomes obvious (a longer lifetime) and variations in display among the plurality of pixels can be reduced. | 01-10-2013 |
20130015439 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is to improve the aperture ratio of a semiconductor device. The semiconductor device includes a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate. The driver circuit includes a channel-etched thin film transistor for driver circuit and a driver circuit wiring formed using metal. Source and drain electrodes of the thin film transistor for the driver circuit are formed using a metal. A channel layer of the thin film transistor for the driver circuit is formed using an oxide semiconductor. The display portion includes a bottom-contact thin film transistor for a pixel and a display portion wiring formed using an oxide conductor. Source and drain electrode layers of the thin film transistor for the pixel are formed using an oxide conductor. A semiconductor layer of the thin film transistor for the pixel is formed using an oxide semiconductor. | 01-17-2013 |
20130016143 | DISPLAY DEVICE AND METHOD FOR DRIVING THE DISPLAY DEVICEAANM KOYAMA; JunAACI SagamiharaAACO JPAAGP KOYAMA; Jun Sagamihara JPAANM MIYAKE; HiroyukiAACI AtsugiAACO JPAAGP MIYAKE; Hiroyuki Atsugi JPAANM TOYOTAKA; KouheiAACI AtsugiAACO JPAAGP TOYOTAKA; Kouhei Atsugi JPAANM HARADA; HikaruAACI KariyaAACO JPAAGP HARADA; Hikaru Kariya JPAANM KANEYASU; MakotoAACI HadanoAACO JPAAGP KANEYASU; Makoto Hadano JP - An object is to suppress crosstalk. A display device includes a pixel portion which includes a first display region, a second display region, and a non-light-emitting region provided between the first display region and the second display region; and a parallax barrier which includes a first light control region, a second light control region, and a light-transmitting region provided between the first light control region and the second light control region. The first light control region overlaps with the first display region, the second light control region overlaps with the second display region, and the center of the width of the light-transmitting region overlaps with the non-light-emitting region. | 01-17-2013 |
20130021239 | DISPLAY DEVICE - A display device includes a display panel including a plurality of pixels, a shutter panel including a driver circuit, a liquid crystal, and light-transmitting electrodes provided in a striped manner, and a positional data detector configured to detect a positional data of a viewer. The shutter panel is provided over a display surface side of the display panel, a width of one of the light-transmitting electrodes in the shutter panel is smaller than that of one of the plurality of pixels, and the driver circuit in the shutter panel is configured to selectively output signals for forming a parallax barrier to the light-transmitting electrodes. The parallax barrier is capable of changing its shape in accordance with the detected positional data. | 01-24-2013 |
20130021316 | LIGHT-EMITTING DEVICE - A light-emitting device in which variation in luminance of pixels is suppressed. A light-emitting device includes at least a transistor, a first wiring, a second wiring, a first switch, a second switch, a third switch, a fourth switch, a capacitor, and a light-emitting element. The first wiring and a first electrode of the capacitor are electrically connected to each other through the first switch. A second electrode of the capacitor is connected to a first terminal of the transistor. The second wiring and a gate of the transistor are electrically connected to each other through the second switch. The first electrode of the capacitor and the gate of the transistor are electrically connected to each other through the third switch. The first terminal of the transistor and an anode of the light-emitting element are electrically connected to each other through the fourth switch. | 01-24-2013 |
20130033475 | Display Device - In a display device including a pixel in which a driving transistor and a light-emitting element connected to a source of the driving transistor are provided, a display defect is suppressed. Before a period in which the driving transistor supplies a current to the light-emitting element, a voltage which has substantially the same level as a voltage which is applied to one electrode and the other electrode of a capacitor is kept as a voltage between a gate and the source of the driving transistor in the period. Specifically, a node where the one electrode of the capacitor and the gate of the driving transistor are electrically connected to each other in the period is made in a floating state, and the other electrode of the capacitor and the source of the driving transistor are electrically connected to each other. | 02-07-2013 |
20130063413 | LIGHT-EMITTING DEVICE - In a light-emitting device, supply of current is controlled using a transistor having a normal gate electrode (a first gate electrode) and a second gate electrode for controlling threshold voltage. The light-emitting device comprises one or more switches for selecting conduction or non-conduction between the first gate electrode and a drain terminal of the transistor. When the threshold voltage of the transistor is acquired, the first gate electrode and the drain terminal of the transistor are brought into conduction with the switch, and the threshold voltage of the transistor is shifted by controlling the potential of the second gate electrode. | 03-14-2013 |
20130082266 | Display Device And Driving Method Thereof - A display device in which not only a variation in a current value due to a threshold voltage but also a variation in a current value due to mobility are prevented from influencing luminance with respect to all the levels of grayscale to be displayed. After applying an initial potential for correction to a gate and a drain of a driving transistor, the gate and the drain of the driving transistor is kept connected in a floating state, and a voltage is held in a capacitor before a voltage between the gate and a source of the driving transistor becomes equal to a threshold voltage. When a voltage obtained by subtracting the voltage held in the capacitor from a voltage of a video signal is applied to the gate and the source of the driving transistor, a current is supplied to a light-emitting element. A value of an initial voltage for correction differs in accordance with the voltage of the video signal. | 04-04-2013 |
20130088468 | SEMICONDUCTOR DEVICE - A semiconductor device in which a decrease in the yield by electrostatic destruction can be prevented is provided. A scan line driver circuit for supplying a signal for selecting a plurality of pixels to a scan line includes a shift register for generating the signal. One conductive film functioning as respective gate electrodes of a plurality of transistors in the shift register is divided into a plurality of conductive films. The divided conductive films are electrically connected to each other by a conductive film which is formed in a layer different from the divided conductive films are formed. The plurality of transistors includes a transistor on an output side of the shift register. | 04-11-2013 |
20130093025 | PULSE OUTPUT CIRCUIT, DISPLAY DEVICE, AND ELECTRONIC DEVICE - An object of the present invention is to suppress deterioration in the thin film transistor. A plurality of pulse output circuits each include first to eleventh thin film transistors is formed. The pulse output circuit is operated on the basis of a plurality of clock signals which control each transistor, the previous stage signal input from a pulse output circuit in the previous stage, the next stage signal input from a pulse output circuit in the next stage, and a reset signal. In addition, a microcrystalline semiconductor is used for a semiconductor layer serving as a channel region of each transistor. Therefore, degradation of characteristics of the transistor can be suppressed. | 04-18-2013 |
20130120229 | SIGNAL LINE DRIVER CIRCUIT AND LIQUID CRYSTAL DISPLAY DEVICE - To prevent malfunctions from occurring. A shift register, a selection circuit having a function of determining which a first pulse signal or a second pulse signal is output at the same potential level as a pulse signal input from the shift register, and a plurality of driving signal output circuits each having functions of generating and outputting a driving signal are provided. Each of the plurality of driving signal output circuits includes a latch unit, a buffer unit, and a switch unit for controlling rewriting of data stored in the latch unit. | 05-16-2013 |
20130121456 | DRIVER CIRCUIT, DISPLAY DEVICE INCLUDING THE DRIVER CIRCUIT, AND ELECTRONIC APPLIANCE INCLUDING THE DISPLAY DEVICE - An object of the present invention is to provide a driver circuit including a normally-on thin film transistor, which driver circuit ensures a small malfunction and highly reliable operation. The driver circuit includes a static shift register including an inverter circuit having a first transistor and a second transistor, and a switch including a third transistor. The first to third transistors each include a semiconductor layer of an oxide semiconductor and are depletion-mode transistors. An amplitude voltage of clock signals for driving the third transistor is higher than a power supply voltage for driving the inverter circuit. | 05-16-2013 |
20130135023 | PULSE SIGNAL OUTPUT CIRCUIT AND SHIFT REGISTER - A pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit are provided. A clock signal is supplied to one of transistors connected to a first output terminal. A power supply potential is applied to one of transistors connected to a second output terminal. Thus, power consumed by discharge and charge of the transistor included in the second output terminal can be reduced. Further, since a potential is supplied from a power source to the second output terminal, sufficient charge capability can be obtained. | 05-30-2013 |
20130162197 | METHOD FOR CHARGING LITHIUM ION SECONDARY BATTERY AND BATTERY CHARGER - A lithium ion secondary battery includes a positive electrode including a positive electrode active material layer containing lithium iron phosphate, a negative electrode including a negative electrode active material layer containing graphite, and an electrolyte including a lithium salt and a solvent including ethylene carbonate and diethyl carbonate between the positive electrode and the negative electrode. When the battery temperature of the lithium ion secondary battery or the temperature of an environment in which the lithium ion secondary battery is used is T and given temperatures are T | 06-27-2013 |
20130162609 | DISPLAY DEVICE - To provide a display device with high image quality and fewer terminals. The present invention is made with a focus on the positional relation between a serial-parallel conversion circuit and an external connection terminal for supplying a serial signal to the serial-parallel conversion circuit. The structure conceived is such that a serial-parallel conversion circuit and an external connection terminal for supplying a serial signal to the serial-parallel conversion circuit are provided close to each other so that an RC load between the serial-parallel conversion circuit and the external connection terminal is reduced | 06-27-2013 |
20130162613 | Signal Converter Circuit, Display Device, and Electronic Device - To suppress an adverse effect of change in held data in a sample-and-hold circuit as a result of increase in operation speed on a generated parallel data signal. A signal converter circuit includes a first sample-and-hold circuit and a second sample-and-hold circuit each of which has a function of extracting and holding part of a serial data signal as a data in accordance with a sampling control signal and has a function of generating a data signal which is one of data signals of a parallel data signal by using the held data and outputting the data signal. The second sample-and-hold circuit includes a switch which has a function of selecting whether the potential of the data of the second sample-and-hold circuit is set to a reference potential or not in accordance with the sampling control signal of the first sample-and-hold circuit. | 06-27-2013 |
20130168670 | SEMICONDUCTOR DEVICE AND DISPLAY DEVICE - A semiconductor device including a first gate electrode and a second gate electrode formed apart from each other over an insulating surface, an oxide semiconductor film including a region overlapping with the first gate electrode with a gate insulating film interposed therebetween, a region overlapping with the second gate electrode with the gate insulating film interposed therebetween, and a region overlapping with neither the first gate electrode nor the second gate electrode, and an insulating film covering the gate insulating film, the first gate electrode, the second gate electrode, and the oxide semiconductor film, and being in direct contact with the oxide semiconductor film is provided. | 07-04-2013 |
20130193434 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An object is to reduce leakage current and parasitic capacitance of a transistor used for an LSI, a CPU, or a memory. A semiconductor integrated circuit such as an LSI, a CPU, or a memory is manufactured using a thin film transistor in which a channel formation region is formed using an oxide semiconductor which becomes an intrinsic or substantially intrinsic semiconductor by removing impurities which serve as electron donors (donors) from the oxide semiconductor and has larger energy gap than that of a silicon semiconductor. With use of a thin film transistor using a highly purified oxide semiconductor layer with sufficiently reduced hydrogen concentration, a semiconductor device with low power consumption due to leakage current can be realized. | 08-01-2013 |
20130193435 | SEMICONDUCTOR DEVICE - An object is to reduce leakage current and parasitic capacitance of a transistor used for an LSI, a CPU, or a memory. A semiconductor integrated circuit included in an LSI, a CPU, or a memory is manufactured using the transistor which is formed using an oxide semiconductor which is an intrinsic or substantially intrinsic semiconductor obtained by removal of impurities which serve as electron donors (donors) from the oxide semiconductor and has larger energy gap than a silicon semiconductor, and is formed over a semiconductor substrate. With the transistor which is formed over the semiconductor substrate and includes the highly purified oxide semiconductor layer with sufficiently reduced hydrogen concentration, a semiconductor device whose power consumption due to leakage current is low can be realized. | 08-01-2013 |
20130200366 | SEMICONDUCTOR DEVICE - To provide a highly reliable semiconductor device in which a transistor including an oxide semiconductor film has stable electric characteristics. The semiconductor device includes a gate electrode layer over a substrate, a gate insulating film over the gate electrode layer, an oxide semiconductor film over the gate insulating film, a drain electrode layer which is over the oxide semiconductor film so as to overlap with the gate electrode layer, and a source electrode layer provided so as to cover part of an outer edge portion of the oxide semiconductor film. An outer edge portion of the drain electrode layer is on an inner side than an outer edge portion of the gate electrode layer. | 08-08-2013 |
20130207102 | SEMICONDUCTOR DEVICE - A transistor using an oxide semiconductor film is provided, the transistor having a small parasitic capacitance and including a back-gate electrode with a high controllability of threshold voltage. In the transistor using an oxide semiconductor film, the back-gate electrode overlaps with a drain electrode and does not overlap with a source electrode. By providing the back-gate electrode so as to overlap with the drain electrode and not to overlap with the source electrode, the operation speed of the transistor can be increased without decreasing the controllability of threshold voltage of the transistor as compared with the case where the back-gate electrode is provided so as to overlap with both the drain electrode and the source electrode. | 08-15-2013 |
20130235093 | METHOD FOR DRIVING DISPLAY DEVICE, DISPLAY DEVICE, AND ELECTRONIC DEVICE - Degradation in image quality of a display image is prevented. A pixel portion which includes a plurality of pixel circuits in row and column directions is divided into a plurality of regions in the row direction. In each of the plurality of regions, operation in which data is written to the pixel circuits on a row basis and the pixel circuits to which the data is written are irradiated with light corresponding to the written data is performed a plurality of times in one frame period in such a manner that at least three single-color image data for displaying the three primary colors are written in one frame period; and black image data is written to the pixel circuits every time before any of the plurality of single-color image data is written to the pixel circuits in each of the plurality of regions. | 09-12-2013 |
20130250529 | PULSE SIGNAL OUTPUT CIRCUIT AND SHIFT REGISTER - An object is to provide a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit. A pulse signal output circuit according to one embodiment of the disclosed invention includes first to tenth transistors. The ratio W/L of the channel width W to the channel length L of the first transistor and W/L of the third transistor are each larger than W/L of the sixth transistor. W/L of the fifth transistor is larger than W/L of the sixth transistor. W/L of the fifth transistor is equal to W/L of the seventh transistor. W/L of the third transistor is larger than W/L of the fourth transistor. With such a structure, a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit can be provided. | 09-26-2013 |
20130251091 | PULSE OUTPUT CIRCUIT, SHIFT REGISTER AND ELECTRONIC EQUIPMENT - A driver circuit of a display device, which includes TFTs of a single conductivity type and outputs an output signal with normal amplitude. A pulse is inputted to TFTs | 09-26-2013 |
20130285711 | SEMICONDUCTOR DEVICE, DRIVING METHOD THEREOF, AND ELECTRONIC DEVICE - To achieve low power consumption of a semiconductor device including a plurality of function blocks capable of being in either an operating state or a not-operating state, by effective use of electric charge discharged from a not-operating function block. In a semiconductor device including a plurality of function blocks, a capacitor is electrically connected to the plurality of function blocks so that electric charge discharged from a not-operating function block is accumulated in the capacitor. Then, the electric charge accumulated in the capacitor is supplied to a function block to be in an operating state, and then power is supplied from a power source to the function block. | 10-31-2013 |
20130286058 | LIQUID CRYSTAL DISPLAY DEVICE AND ELECTRONIC DEVICE - To suppress deterioration of quality of a still image displayed with a reduced refresh rate. A liquid crystal display device includes a display portion that is controlled by a driver circuit and includes normally white mode (or normally black mode) liquid crystals, and a timing controller for controlling the driver circuit. The timing controller is supplied with an image signal for displaying a moving image and an image signal for displaying a still image. The absolute value of a voltage applied to the liquid crystals in order to express black (or white) in an image corresponding to the image signal for displaying the still image is larger than that of a voltage applied to the liquid crystals in order to express black (or white) in an image corresponding to the image signal for displaying the moving image. | 10-31-2013 |
20130292669 | SEMICONDUCTOR DEVICE - When a semiconductor device is provided with an inverter comprising a transistor having a first gate and a second gate, the semiconductor device does not require a circuit for generating a potential to be input to the second gate of the transistor and has a small number of wirings. Moreover, a semiconductor device having high reliability is provided. The semiconductor device includes a plurality of stages of circuits each provided with two inverter circuits in parallel. Two inverter circuits in a given stage output respective signals of opposite polarities, which is utilized for interchanging signals output from inverter circuits in the previous stage. Thus, an inverted signal is input to the second gate of the transistor included in each of two inverter circuits in the subsequent stage. | 11-07-2013 |
20130297952 | PROCESSOR AND DRIVING METHOD THEREOF - To provide a processor with low power consumption, particularly a processor in which low power consumption is achieved by reducing leakage current from a high potential power supply line. A circuit of the processor used for a power gating driving method is divided into a first circuit block including a logic circuit and the like and used only in an arithmetic processing period, a second circuit block including a volatile memory element and the like and used in the arithmetic processing period, a data storage period, and a data restorage period, and a third circuit block including a nonvolatile memory element and the like and used in the data storage period and the data restorage period. The first to third circuit blocks are connected to first to third high potential power supply lines, respectively, and these lines are electrically connected to a fourth high potential power supply line which supplies power to the processor, through switches. | 11-07-2013 |
20130307604 | PULSE OUTPUT CIRCUIT, SHIFT REGISTER, AND DISPLAY DEVICE - An object is to suppress change of a threshold voltage of a transistor in a shift register and to prevent the transistor from malfunctioning during a non-selection period. A pulse output circuit provided in the shift register regularly supplies a potential to a gate electrode of a transistor which is in a floating state so that the gate electrode is turned on during a non-selection period when a pulse is not outputted. In addition, supply of a potential to the gate electrode of the transistor is performed by turning on or off another transistor regularly. | 11-21-2013 |
20130308392 | MEMORY DEVICE AND METHOD FOR DRIVING MEMORY DEVICE - A memory device in which one memory cell can operate in both a single-level cell mode and a multi-level cell mode includes a signal transmission path for a multi-level cell mode in which a multi-bit digital signal representing any of three or more states input to the memory circuit is converted by a D/A converter and stored in the memory cell and the stored data is read by converting a signal output from the memory cell into a multi-bit digital signal with an A/D converter and the multi-bit digital signal is output from the memory circuit, and a signal transmission path for a single-level cell mode in which a single-bit digital signal representing any of two states input to the memory circuit is directly stored in the memory cell and the signal stored in the memory cell is directly output from the memory cell. | 11-21-2013 |
20130320848 | LIGHT-EMITTING DEVICE - A light-emitting device that is less influenced by variations in threshold voltage of a transistor is provided. Further, a light-emitting device in which variations in luminance due to variations in threshold voltage of a transistor can be reduced is provided. Further, influences due to variations in threshold voltage of a transistor are corrected in a short time. A light-emitting element, a transistor functioning as a switch supplying current to the light-emitting element, and a circuit in which threshold voltage of the transistor is obtained and voltage between a gate and a source (gate voltage) of the transistor is corrected in accordance with the obtained threshold voltage are included. An n-channel transistor in which threshold voltage changes in a positive direction and the amount of the change is small is used. When the threshold voltage of the transistor is obtained, the gate voltage of the transistor is adjusted as appropriate. | 12-05-2013 |
20130322592 | PULSE SIGNAL OUTPUT CIRCUIT AND SHIFT REGISTER - To provide a pulse signal output circuit and a shift register which have lower power consumption, are not easily changed over time, and have a longer lifetime. A pulse signal output circuit includes a first input signal generation circuit; a second input signal generation circuit; an output circuit which includes a first transistor and a second transistor and outputs a pulse signal in response to a signal output from the first and second input signal generation circuits; a monitor circuit which obtains the threshold voltages of the first and second transistors; and a power supply output circuit which generates a power supply potential raised by a potential higher than or equal to a potential which is equal to or substantially equal to the threshold voltage and supplies the power supply potential to the first and second input signal generation circuits. A shift register includes the pulse signal output circuit. | 12-05-2013 |
20130341616 | DISPLAY DEVICE AND ELECTRONIC DEVICE - An object of the invention is to provide a circuit technique which enables reduction in power consumption and high definition of a display device. A switch controlled by a start signal is provided to a gate electrode of a transistor, which is connected to a gate electrode of a bootstrap transistor. When the start signal is input, a potential is supplied to the gate electrode of the transistor through the switch, and the transistor is turned off. The transistor is turned off, so that leakage of a charge from the gate electrode of the bootstrap transistor can be prevented. Accordingly, time for storing a charge in the gate electrode of the bootstrap transistor can be shortened, and high-speed operation can be performed. | 12-26-2013 |
20140002426 | PULSE OUTPUT CIRCUIT AND SEMICONDUCTOR DEVICE | 01-02-2014 |
20140015819 | Method for Driving Display Device and Display Device - Power consumption is sufficiently reduced even when a moving image is displayed at an increased driving frequency. A liquid crystal display device includes a signal generation circuit which outputs a polarity inversion signal that is generated in accordance with a count value obtained by counting cycles of a vertical synchronization signal and a source driver which switches a polarity of video signals input to a pixel in accordance with the polarity inversion signal. The polarity of the video signals is kept the same for m (m is greater than or equal to 2) or more frame periods by the polarity inversion signal. | 01-16-2014 |
20140015868 | Liquid Crystal Display Device and Method for Driving Liquid Crystal Display Device - A liquid crystal display device capable of consuming less power and a method for driving the liquid crystal display device are provided. The liquid crystal display device includes a pixel portion, a light supply portion sequentially supplying lights of a plurality of hues to the pixel portion, a counter counting the number of frame periods, a signal generator determining timing of inverting the polarity of an image signal every plural consecutive frame periods by using data on the number of frame periods counted by the counter, and a controller inverting the polarity of the image signal in accordance with the timing. A plurality of pixels are provided in the pixel portion. The image signal whose polarity is inverted every plural frame periods is input to the plurality of pixels. | 01-16-2014 |
20140016056 | LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR DRIVING THE SAME - A liquid crystal display device whose power consumption is reduced while image quality is prevented from being degraded is provided. Further, a method for driving a liquid crystal display device whose power consumption is reduced while image quality is prevented from being degraded is provided. The liquid crystal display device includes a transistor whose leakage current in an off state is reduced and a liquid crystal element. The capacitance of a pixel satisfies the formula (1) and the formula (2). | 01-16-2014 |
20140022155 | DISPLAY DEVICE, DRIVING METHOD OF THE SAME AND ELECTRONIC DEVICE - A display device includes a pixel portion to which a non-inverted video signal is input in a first period and an inverted video signal is input in a second period, and a signal line driver circuit comprising a switch circuit portion for controlling output of the non-inverted video signal and the inverted video signal to the pixel portion. The switch circuit portion is controlled by a first signal serving as a first high power supply potential and a first low power supply potential in the first period and is controlled by a second signal serving as a second high power supply potential and a second low power supply potential in the second period, so that the switch circuit portion controls output of the non-inverted video signal and the inverted video signal to the pixel portion. | 01-23-2014 |
20140028645 | Liquid Crystal Display Device - A liquid crystal display device includes a plurality of pixels each including a transistor and a liquid crystal element, and a driver circuit that inputs at least a video signal and a reset signal to the plurality of pixels. The driver circuit makes the polarity of the video signal inverted every m frames (m is a natural number of 2 or more) and inputs the inverted video signal to the pixel, and inputs the reset signal to the pixel while not inputting the video signal. | 01-30-2014 |
20140034954 | SEMICONDUCTOR DEVICE - To provide a semiconductor device including a capacitor whose charge capacity is increased without reducing the aperture ratio. The semiconductor device includes a transistor including a light-transmitting semiconductor film, a capacitor where a dielectric film is provided between a pair of electrodes, an insulating film provided over the light-transmitting semiconductor film, and a light-transmitting conductive film provided over the insulating film. In the capacitor, a metal oxide film containing at least indium (In) or zinc (Zn) and formed on the same surface as the light-transmitting semiconductor film in the transistor serves as one electrode, the light-transmitting conductive film serves as the other electrode, and the insulating film provided over the light-transmitting semiconductor film serves as the dielectric film. | 02-06-2014 |
20140043315 | LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR DRIVING THE SAME - Power consumed in a liquid crystal display device owing to inversion driving is reduced. A control circuit generates a polarity control signal whose potential level is switched at intervals of two or more frame periods. A data line driver circuit processes an image signal to generate a data signal. The data signal has a polarity corresponding to the potential level of the polarity control signal. The control circuit stops output of the image signal to the data line driver circuit when determining that there is no motion in data of the image signal. The control circuit controls a scan line driver circuit and the data line driver circuit, thereby performing, in response to a change in the potential level of the polarity control signal, rewriting of a display portion at least in one frame period during a period in which the output of the image signal is stopped. | 02-13-2014 |
20140056400 | DRIVER CIRCUIT, DISPLAY DEVICE INCLUDING THE DRIVER CIRCUIT, AND ELECTRONIC APPLIANCE INCLUDING THE DISPLAY DEVICE - An object of the present invention is to provide a driver circuit including a normally-on thin film transistor, which driver circuit ensures a small malfunction and highly reliable operation. The driver circuit includes a static shift register including an inverter circuit having a first transistor and a second transistor, and a switch including a third transistor. The first to third transistors each include a semiconductor layer of an oxide semiconductor and are depletion-mode transistors. An amplitude voltage of clock signals for driving the third transistor is higher than a power supply voltage for driving the inverter circuit. | 02-27-2014 |
20140061636 | SEMICONDUCTOR DEVICE - A semiconductor device having a high aperture ratio, including a capacitor with increased capacitance, and consuming low power is provided. The semiconductor device includes pixels defined by x (x is an integer of 2 or more) scan lines and y (y is an integer of 1 or more) signal lines, and each of the pixels includes a transistor, and a capacitor. The transistor includes a semiconductor film having a light-transmitting property. The capacitor includes a dielectric film between a pair of electrodes. In the capacitor between an (m−1)-th (m is an integer of 2 or more and x or less) scan line and an m-th scan line, a semiconductor film on the same surface as the semiconductor film having a light-transmitting property of the transistor serves as one of the pair of electrodes and is electrically connected to the (m−1)-th scan line. | 03-06-2014 |
20140070209 | SEMICONDUCTOR DEVICE - A semiconductor device including a capacitor whose charge capacity is increased while improving the aperture ratio is provided. Further, a semiconductor device which consumes less power is provided. A transistor which includes a light-transmitting semiconductor film, a capacitor in which a dielectric film is provided between a pair of electrodes, an insulating film which is provided over the light-transmitting semiconductor film, and a first light-transmitting conductive film which is provided over the insulating film are included. The capacitor includes the first light-transmitting conductive film which serves as one electrode, the insulating film which functions as a dielectric, and a second light-transmitting conductive film which faces the first light-transmitting conductive film with the insulating film positioned therebetween and functions as the other electrode. The second light-transmitting conductive film is formed over the same surface as the light-transmitting semiconductor film of the transistor and is a metal oxide film containing a dopant. | 03-13-2014 |
20140078132 | METHOD FOR DRIVING LIQUID CRYSTAL DISPLAY DEVICE - The liquid crystal display device includes a first substrate provided with a terminal portion, a switching transistor, a driver circuit portion, and a pixel circuit portion including a pixel transistor and a plurality of pixels, a second substrate provided with a common electrode electrically connected to the terminal portion through the switching transistor, and liquid crystal between a pixel electrode and the common electrode. In a period during which a still image is switched to a moving image, the following steps are sequentially performed: a first step of supplying the common potential to the common electrode; a second step of supplying a power supply voltage to the driver circuit portion; a third step of supplying a clock signal to the driver circuit portion; and a fourth step of supplying a start pulse signal to the driver circuit portion. | 03-20-2014 |
20140103387 | Display Device and Driving Method of the Same - A problem in that a light emitting element slightly emits light is solved by an off current of a thin film transistor connected in series to the light emitting element, thereby a display device which can perform a clear display by increasing contrast, and a driving method thereof are provided. When the thin film transistor connected in series to the light emitting element is turned off, a charge held in the capacitance of the light emitting element itself is discharged. Even when an off current is generated at the thin film transistor connected in series to the light emitting element, this off current charges this capacitance until the capacitance of the light emitting element itself holds a predetermined voltage again. Accordingly, the off current of the thin film transistor does not contribute to light emission. In this manner, a slight light emission of the light emitting element can be reduced. | 04-17-2014 |
20140104151 | LIQUID CRYSTAL DISPLAY DEVICE - A liquid crystal display device which has higher definition and reduced power consumption while its image quality is maintained is provided. A switching transistor of an active matrix liquid crystal display device is formed using a transistor having an extremely low off-state current to reduce the area of a capacitor; the capacitance value of parasitic capacitance formed by the left end of a pixel electrode and a first source line is made to be approximately the same as that of parasitic capacitance formed by the right end of the pixel electrode and a second source line; and video signals having one polarity are input to the first source line, and video signals having the other polarity are input to the second source line. | 04-17-2014 |
20140104262 | LIQUID CRYSTAL DISPLAY DEVICE AND DRIVING METHOD THEREOF - In a video voltage comparator circuit, an average of first video voltages applied to pixel electrodes of pixels in the second-half rows in a k-th frame period (k is a natural number) is compared with an average of second video voltages applied to pixel electrodes of pixels in the first-half rows in a (k+1)th frame period for each row. In an overdrive voltage switching circuit, when a difference obtained from the comparison in the video voltage comparator circuit is greater than or equal to a threshold value, the overdrive voltage in the (k+1)th frame period is switched to a first overdrive voltage, and when the difference obtained from the comparison in the video voltage comparator circuit is less than the threshold value, the overdrive voltage in the (k+1)th frame period is switched to a second overdrive voltage lower than the first overdrive voltage. | 04-17-2014 |
20140131704 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An object of an embodiment of the present invention is to manufacture a semiconductor device with high display quality and high reliability, which includes a pixel portion and a driver circuit portion capable of high-speed operation over one substrate, using transistors having favorable electric characteristics and high reliability as switching elements. Two kinds of transistors, in each of which an oxide semiconductor layer including a crystalline region on one surface side is used as an active layer, are formed in a driver circuit portion and a pixel portion. Electric characteristics of the transistors can be selected by choosing the position of the gate electrode layer which determines the position of the channel. Thus, a semiconductor device including a driver circuit portion capable of high-speed operation and a pixel portion over one substrate can be manufactured. | 05-15-2014 |
20140138676 | SEMICONDUCTOR DEVICE - A highly reliable semiconductor device is provided. The semiconductor device includes a gate electrode, a gate insulating film over the gate electrode, a semiconductor film overlapping with the gate electrode with the gate insulating film positioned therebetween, a source electrode and a drain electrode that are in contact with the semiconductor film, and an oxide film over the semiconductor film, the source electrode, and the drain electrode. An end portion of the semiconductor film is spaced from an end portion of the source electrode or the drain electrode in a region overlapping with the semiconductor film in a channel width direction. The semiconductor film and the oxide film each include a metal oxide including In, Ga, and Zn. The oxide film has an atomic ratio where the atomic percent of In is lower than the atomic percent of In in the atomic ratio of the semiconductor film. | 05-22-2014 |
20140139775 | SEMICONDUCTOR DEVICE AND DISPLAY DEVICE - A semiconductor device includes: a transistor including a gate electrode, a gate insulating film over the gate electrode, a semiconductor layer over the gate insulating film, and a source electrode and a drain electrode over the semiconductor layer; a first insulating film comprising an inorganic material over the transistor; a second insulating film comprising an organic material over the first insulating film; a first conductive film over the second insulating film and in a region overlapping with the semiconductor layer; a third insulating film comprising an inorganic material over the first conductive film; and a second conductive film over the third insulating film and in a region overlapping with the first conductive film. The absolute value of a first potential applied to the first conductive film is greater than the absolute value of a second potential applied to the second conductive film. | 05-22-2014 |
20140145181 | DISPLAY DEVICE - To provide a novel display device with improved reliability. The display device includes an insulating layer between a first wiring and a second wiring. The insulating layer includes a first insulating layer and a second insulating layer overlapping with the first insulating layer and a region where a part of the second insulating layer is removed, and the region serves as a protection circuit. In addition, the first insulating layer and the second insulating layer are included in a region where the insulating layer overlaps with a semiconductor layer of a transistor, and a region where the first insulating layer and the second insulating layer are removed is included in a region where the first wiring and the second wiring are directly connected to each other. | 05-29-2014 |
20140145182 | DISPLAY DEVICE AND ELECTRONIC DEVICE - To provide a novel display device. The display device includes a pixel portion, a driver circuit portion that is provided outside the pixel portion, and a protection circuit that is electrically connected to one of or both the pixel portion and the driver circuit portion and includes a pair of electrodes. The pixel portion includes pixel electrodes arranged in a matrix and transistors electrically connected to the pixel electrodes. The transistor includes a first insulating layer containing nitrogen and silicon, and a second insulating layer containing oxygen, nitrogen, and silicon. The protection circuit includes the first insulating layer between the pair of electrodes. | 05-29-2014 |
20140145625 | Semiconductor Device, Display Device, and Electronic Device - To prevent an influence of normally-on characteristics of the transistor which a clock signal is input to a terminal of, a wiring to which a first low power supply potential is appled and a wiring to which a second low power supply potential lower than the first low power supply potential is applied are electrically connected to a gate electrode of the transistor. A semiconductor device including the transistor can operate stably. | 05-29-2014 |
20140146033 | DISPLAY DEVICE - To provide a novel display device without deterioration of display quality, the display device includes a display panel including a pixel portion that displays still images at a frame frequency of 30 Hz or less, a temperature sensing unit that senses the temperature of the display panel, a memory device that stores a correction table containing correction data, and a control circuit to which correction data selected from the correction table is input in accordance with an output of the temperature sensing unit. The pixel portion includes a plurality of pixels. Each of the pixels includes a transistor, a display element, and a capacitor. The control circuit outputs a voltage based on the correction data input to the control circuit, to the capacitor included in each of the pixels. | 05-29-2014 |
20140146034 | DISPLAY DEVICE - A display device is driven through no wire cable such as an FPC, and a display image is continuously held for a certain period of time by storing an image signal received from a wireless communication device so that the display image can be held even when the display device is out of communication range with the wireless communication device. A display device includes at least a pixel circuit having an SRAM (static random access memory) circuit, a circuit which controls the pixel circuit, an antenna circuit, a circuit which generates a demodulation signal, a circuit which rectifies a wireless signal, a circuit which generates first voltage, a charge circuit which stores second voltage, a charge control circuit, a voltage supply control circuit, and a circuit which controls the charge control circuit and the voltage supply control circuit. | 05-29-2014 |
20140152932 | LIQUID CRYSTAL DISPLAY DEVICE - A liquid crystal display device preventing flicker. The liquid crystal display device includes a plurality of pixels each having a transistor, a liquid crystal element to which a first signal and a second signal having opposite polarities are alternately applied through the transistor, and a capacitor including a first electrode and a second electrode. The liquid crystal element includes a pixel electrode and a common electrode partly overlapping with each other with an insulating film interposed therebetween, and a liquid crystal layer over the pixel electrode and the common electrode. The first electrode of the capacitor is electrically connected to the pixel electrode. The potential of the second electrode changes between a first potential and a second potential having different levels after the first signal is applied until the second signal is applied, whereby a change in the voltage applied to the liquid crystal layer is reduced. | 06-05-2014 |
20140175432 | SEMICONDUCTOR DEVICE - A semiconductor device includes a transistor including an insulating film, an oxide semiconductor film, a gate electrode overlapping with the oxide semiconductor film, and a pair of electrodes in contact with the oxide semiconductor film; a capacitor including a first light-transmitting conductive film over the insulating film, a dielectric film over the first light-transmitting conductive film, and a second light-transmitting conductive film over the dielectric film; an oxide insulating film over the pair of electrodes of the transistor; and a nitride insulating film over the oxide insulating film. The dielectric film is the nitride insulating film, the oxide insulating film has a first opening over one of the pair of electrodes, the nitride insulating film has a second opening over the one of the pair of electrodes, and the second opening is on an inner side than the first opening. | 06-26-2014 |
20140175433 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device in which the aperture ratio and which includes a capacitor with increased charge capacity is provided. A semiconductor device in which the number of masks used in a manufacturing process is reduced and the manufacturing costs are reduced is also provided. An impurity is contained in a light-transmitting semiconductor film so that the semiconductor film functions as one of a pair of electrodes in a capacitor. The other pair of electrodes is formed using a light-transmitting conductive film such as a pixel electrode. Further, a scan line and a capacitor line are provided on the same surface and in parallel to each other. An opening reaching the capacitor line and an opening reaching a conductive film which can be formed in the formation of a source electrode or a drain electrode of the transistor can be formed concurrently in an insulating film. | 06-26-2014 |
20140176076 | POWER STORAGE DEVICE AND METHOD FOR CHARGING THE SAME - A decrease in the capacity of a power storage device is inhibited by adjusting or reducing imbalance in the amount of inserted and extracted carrier ions between positive and negative electrodes, which is caused by decomposition of an electrolyte solution of the negative electrode. Further, the capacity of the power storage device can be restored. Furthermore, impurities in the electrolyte solution can be decomposed with the use of the third electrode. A power storage device including positive and negative electrodes, an electrolyte, and a third electrode is provided. The third electrode has an adequate electrostatic capacitance. The third electrode can include a material with a large surface area. In addition, a method for charging the power storage device including the steps of performing charging by applying a current between the positive and negative electrodes, and performing additional applying a current between the third electrode and the negative electrode is provided. | 06-26-2014 |
20140184172 | POWER STORAGE DEVICE AND CHARGING METHOD THEREOF - An object is to inhibit a decrease in the capacity of a power storage device or to compensate the capacity, by adjusting or rectifying an imbalance between a positive electrode and a negative electrode, which is caused by decomposition of an electrolyte solution at the negative electrode. Provided is a charging method of a power storage device including a positive electrode using an active material that exhibits two-phase reaction, a negative electrode, and an electrolyte solution. The method includes the steps of, after constant current charging, performing constant voltage charging with a voltage that does not cause decomposition of the electrolyte solution until a charging current becomes lower than or equal to a lower current value limit; and after the constant voltage charging, performing additional charging with a voltage that causes decomposition of the electrolyte solution until a resistance of the power storage device reaches a predetermined resistance. | 07-03-2014 |
20140184484 | DISPLAY DEVICE - To provide a novel display device where display quality does not deteriorate. The display device includes a display portion configured to display a still image at a frame frequency of 30 Hz or lower. The display portion includes a driver circuit, a plurality of wirings, and a pixel portion. The pixel portion comprises a plurality of pixels. Each of the plurality of pixels comprises a transistor, a display element, and a capacitor. A channel is formed in an oxide semiconductor layer included in the transistor. A gate of the transistor is electrically connected to one of the plurality of wirings. The driver circuit performs scanning where the plurality of wirings in one of odd-numbered rows and even-numbered rows are sequentially selected and scanning where the plurality of wirings in the other of the odd-numbered rows and the even-numbered rows are sequentially selected. | 07-03-2014 |
20140204073 | LIQUID CRYSTAL DISPLAY DEVICE AND DRIVING METHOD OF THE SAME - Provided is a liquid crystal display device having a pixel including a transistor and a liquid crystal element and a protection circuit electrically connected to one of a source and a drain of the transistor through a data line. The protection circuit includes a first terminal supplied with a first power supply potential and a second terminal supplied with a second power supply potential higher than the first power supply potential. In a moving image display mode, an image signal is input from the data line to the liquid crystal element through the transistor, and the first power supply potential is set at the first potential. In a still image display mode, supply of the image signal is stopped, and the first power supply potential is set at the second potential. The second potential is substantially the same as the minimum value of the image signal. | 07-24-2014 |
20140209902 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to reduce the manufacturing cost of a semiconductor device. An object is to improve the aperture ratio of a semiconductor device. An object is to make a display portion of a semiconductor device display a higher-definition image. An object is to provide a semiconductor device which can be operated at high speed. The semiconductor device includes a driver circuit portion and a display portion over one substrate. The driver circuit portion includes: a driver circuit TFT in which source and drain electrodes are formed using a metal and a channel layer is formed using an oxide semiconductor; and a driver circuit wiring formed using a metal. The display portion includes: a pixel TFT in which source and drain electrodes are formed using an oxide conductor and a semiconductor layer is formed using an oxide semiconductor; and a display wiring formed using an oxide conductor. | 07-31-2014 |
20140240631 | DISPLAY DEVICE AND ELECTRONIC DEVICE - Transistors each include a gate electrode, a gate insulating layer over the gate electrode, an oxide semiconductor layer over the gate insulating layer, and a source electrode and a drain electrode over the oxide semiconductor layer. A driver circuit portion includes first to third wirings formed in the same step as the gate electrode, fourth to sixth wirings formed in the same step as the source electrode and the drain electrode, a seventh wiring formed in the same step as a pixel electrode, a first region where the second wiring intersects with the fifth wiring, and a second region where the third wiring intersects with the sixth wiring. The first wiring is connected to the fourth wiring through the seventh wiring. A distance between the wirings in the second region is longer than that in the first region. | 08-28-2014 |
20140241487 | SEMICONDUCTOR DEVICE, DRIVER CIRCUIT, AND DISPLAY DEVICE - To provide a semiconductor device having a high aperture ratio and including a capacitor with a high charge capacitance. To provide a semiconductor device with a narrow bezel. A transistor over a substrate; a first conductive film over a surface over which a gate electrode of the transistor is provided; a second conductive film over a surface over which a pair of electrodes of the transistor is provided; and a first light-transmitting conductive film electrically connected to the first conductive film and the second conductive film are included. The second conductive film overlaps the first conductive film with a gate insulating film of the transistor laid between the second conductive film and the first conductive film. | 08-28-2014 |
20140253533 | DRIVING METHOD OF SEMICONDUCTOR DEVICE - A highly reliable semiconductor device and a method for driving the highly reliable semiconductor device is provided. In a semiconductor device in which a light-transmitting storage capacitor having a MOS capacitor structure is provided and a light-transmitting semiconductor film functioning as one electrode of the storage capacitor is electrically connected to a capacitor line, a shift of a threshold voltage of the storage capacitor in the positive direction is suppressed in a period during which an image is not displayed. For example, the shift of the threshold voltage of the storage capacitor in the positive direction is suppressed by application of a negative bias to a pixel electrode functioning as the other electrode of the storage capacitor. | 09-11-2014 |
20140291640 | LIGHT-EMITTING DEVICE - A light-emitting device in which electrical characteristics of a transistor in a pixel can be monitored without degrading display quality is provided. The light-emitting device includes a plurality of pixels each comprising a pixel circuit. A pixel circuit included in a first pixel is electrically connected to a light-emitting element included in a second pixel through a first switch. A pixel circuit included in the second pixel is electrically connected to the light-emitting element included in the second pixel through a second switch and to a light-emitting element included in a third pixel through a third switch. The pixel circuits are connected to a correction circuit through switches. | 10-02-2014 |
20140293183 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An aperture ratio of a semiconductor device is improved. A driver circuit and a pixel are provided over one substrate, and a first thin film transistor in the driver circuit and a second thin film transistor in the pixel each include a gate electrode layer, a gate insulating layer over the gate electrode layer, an oxide semiconductor layer over the gate insulating layer, source and drain electrode layers over the oxide semiconductor layer, and an oxide insulating layer in contact with part of the oxide semiconductor layer over the gate insulating layer, the oxide semiconductor layer, and the source and drain electrode layers. The gate electrode layer, the gate insulating layer, the oxide semiconductor layer, the source and drain electrode layers, and the oxide insulating layer of the second thin film transistor each have a light-transmitting property. | 10-02-2014 |
20140295261 | ELECTROCHEMICAL DEVICE AND METHOD FOR SUPPRESSING DETERIORATION OF THE ELECTROCHEMICAL DEVICE - An object is to provide an electrochemical device in which lithium deposition and reduction in battery capacity can be inhibited even when the concentration of a lithium salt in an electrolytic solution is lower than 1.0 M. Lithium deposition can be inhibited and lithium whiskers can be dissolved by applying an inversion pulse current for a short time more than once in a charging period of a secondary battery which deteriorates. By applying the inversion pulse current more than once, deterioration of a lithium-ion secondary battery due to repeated charging can be suppressed even when it is a secondary battery in which the concentration of a lithium salt in an electrolytic solution is lower than 1.0 M and therefore lithium is easily deposited. | 10-02-2014 |
20140300399 | PULSE GENERATION CIRCUIT AND SEMICONDUCTOR DEVICE - Two gate drivers each comprising a shift register and a demultiplexer including single conductivity type transistors are provided on left and right sides of a pixel portion. Gate lines are alternately connected to the left-side and right-side gate drivers in every M rows. The shift register includes k first unit circuits connected in cascade. The demultiplexer includes k second unit circuits to each of which a signal is input from the first unit circuit and to each of which M gate lines are connected. The second unit circuit selects one or more wirings which output an input signal from the first unit circuit among M gate lines, and outputs the signal from the first unit circuit to the selected wiring(s). Since gate signals can be output from an output of a one-stage shift register to the M gate lines, the width of the shift register can be narrowed. | 10-09-2014 |
20140301045 | PULSE SIGNAL OUTPUT CIRCUIT AND SHIFT REGISTER - An object is to provide a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit. A pulse signal output circuit according to one embodiment of the disclosed invention includes first to tenth transistors. The ratio W/L of the channel width W to the channel length L of the first transistor and W/L of the third transistor are each larger than W/L of the sixth transistor. W/L of the fifth transistor is larger than W/L of the sixth transistor. W/L of the fifth transistor is equal to W/L of the seventh transistor. W/L of the third transistor is larger than W/L of the fourth transistor. With such a structure, a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit can be provided. | 10-09-2014 |
20140306870 | METHOD FOR DRIVING LIQUID CRYSTAL DISPLAY DEVICE - In an image signal writing period, a first image signal is supplied to a first liquid crystal element and a first capacitor from a first signal line. In a backlight lighting period, display is performed in a light-transmitting pixel portion in response to the first image signal. In a black grayscale signal writing period, a signal for black display is supplied to a second liquid crystal element and a second capacitor from a second signal line. In a still image signal writing period, a second image signal is supplied to the first liquid crystal element, the first capacitor, the second liquid crystal element, and the second capacitor from the first signal line. In a still image signal holding period, display is performed in the reflective pixel portion in response to the second image signal. | 10-16-2014 |
20140333864 | DISPLAY DEVICE AND ELECTRONIC DEVICE INCLUDING THE DISPLAY DEVICE - To provide a display device including a transistor that includes an oxide semiconductor and has favorable characteristics, a pixel electrode electrically connected to the transistor, and a capacitor electrically connected to the pixel electrode. To provide a display device that can be manufactured at low cost. The display device includes a display element including a pixel electrode, a transistor that performs switching of the display element and includes a first oxide semiconductor layer serving as a channel formation region, a capacitor that is electrically connected to the display element and includes a dielectric layer between a pair of electrodes. The pixel electrode is a second oxide semiconductor layer formed on the same surface as that on which the first oxide semiconductor layer is formed, and also serves as one electrode of the capacitor. | 11-13-2014 |
20140339539 | SEMICONDUCTOR DEVICE - A semiconductor device including a transistor having excellent electrical characteristics is provided. Alternatively, a semiconductor device having a high aperture ratio and including a capacitor capable of increasing capacitance is provided. The semiconductor device includes a gate electrode, an oxide semiconductor film overlapping the gate electrode, an oxide insulating film in contact with the oxide semiconductor film, a first oxygen barrier film between the gate electrode and the oxide semiconductor film, and a second oxygen barrier film in contact with the first oxygen barrier film. The oxide semiconductor film and the oxide insulating film are provided on an inner side of the first oxygen barrier film and the second oxygen barrier film. | 11-20-2014 |
20140339543 | SEMICONDUCTOR DEVICE - A semiconductor device includes a dual-gate transistor including an oxide semiconductor film between a first gate electrode and a second gate electrode, a gate insulating film between the oxide semiconductor film and the second gate electrode, and a pair of electrodes in contact with the oxide semiconductor film. The semiconductor device further includes an insulating film over the gate insulating film, and a conductive film over the insulating film and connected to one of the pair of electrodes. The insulating film includes an opening in at least a region overlapping with the oxide semiconductor film in which the second gate electrode is provided in contact with the gate insulating film. The second gate electrode is formed using the same material as the conductive film connected to the one of the pair of electrodes. | 11-20-2014 |
20140340363 | IMAGING PANEL AND IMAGING DEVICE - A novel transmissive imaging panel, a novel imaging panel with a display function, or a novel imaging device is provided. The imaging panel that includes a plurality of windows or pixels arranged in matrix, a photoelectric conversion element extending between the plurality of windows or pixels, and a sensor circuit supplied with a signal from the photoelectric conversion element has been devised. | 11-20-2014 |
20140340608 | SEMICONDUCTOR DEVICE - A semiconductor device which includes an oxide semiconductor and in which formation of a parasitic channel due to a gate BT stress is suppressed is provided. Further, a semiconductor device including a transistor having excellent electrical characteristics is provided. The semiconductor device includes a transistor having a dual-gate structure in which an oxide semiconductor film is provided between a first gate electrode and a second gate electrode; gate insulating films are provided between the oxide semiconductor film and the first gate electrode and between the oxide semiconductor film and the second gate electrode; and in the channel width direction of the transistor, the first or second gate electrode faces a side surface of the oxide semiconductor film with the gate insulating film between the oxide semiconductor film and the first or second gate electrode. | 11-20-2014 |
20140354524 | LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR DRIVING THE SAME - To increase the frequency of input of image signals in terms of design in a field-sequential liquid crystal display device. Image signals are concurrently supplied to pixels provided in a plurality of rows among pixels arranged in matrix in a pixel portion of the liquid crystal display device. Thus, the frequency of input of an image signal to each pixel can be increased without change in response speed of a transistor or the like included in the liquid crystal display device. | 12-04-2014 |
20140361290 | DISPLAY DEVICE - In a pixel including a selection transistor, a driver transistor, and a light-emitting element, as the driver transistor, a transistor is used in which a channel is formed in an oxide semiconductor film and its channel length is 0.5 μm or greater and 4.5 μm or less. The driver transistor includes a first gate electrode over an oxide semiconductor film and a second gate electrode below the oxide semiconductor film. The first gate electrode and the second gate electrode are electrically connected to each other and overlap with the oxide semiconductor film. Furthermore, in the selection transistor of a pixel, which does not need to have field-effect mobility as high as that of the driver transistor, a channel length is made longer than at least the channel length of the driver transistor. | 12-11-2014 |
20140362324 | SEQUENTIAL CIRCUIT AND SEMICONDUCTOR DEVICE - The following semiconductor device provides high reliability and a narrower frame width. The semiconductor device includes a driver circuit and a pixel portion. The driver circuit has a first transistor including a first gate and a second gate electrically connected to each other with a semiconductor film sandwiched therebetween, and a second transistor electrically connected to the first transistor. The pixel portion includes a third transistor, a liquid crystal element, and a capacitor. The liquid crystal element includes a first transparent conductive film electrically connected to the third transistor, a second conductive film, and a liquid crystal layer. The capacitor includes the first conductive film, a third transparent conductive film, and a nitride insulating film. The nitride insulating film is positioned between the first transparent conductive film and the third transparent conductive film, and positioned between the semiconductor film and the second gate of the first transistor. | 12-11-2014 |
20140374760 | PULSE OUTPUT CIRCUIT, SHIFT REGISTER, AND DISPLAY DEVICE - An object is to suppress change of a threshold voltage of a transistor in a shift register and to prevent the transistor from malfunctioning during a non-selection period. A pulse output circuit provided in the shift register regularly supplies a potential to a gate electrode of a transistor which is in a floating state so that the gate electrode is turned on during a non-selection period when a pulse is not outputted. In addition, supply of a potential to the gate electrode of the transistor is performed by turning on or off another transistor regularly. | 12-25-2014 |
20150014680 | SEMICONDUCTOR DEVICE AND DISPLAY DEVICE INCLUDING THE SEMICONDUCTOR DEVICE - A semiconductor device including a transistor and a connection portion is provided. The transistor includes a gate electrode, a first insulating film over the gate electrode, an oxide semiconductor film over the first insulating film and at a position overlapping with the gate electrode, and source and drain electrodes electrically connected to the oxide semiconductor film; and the connection portion includes a first wiring on the same surface as a surface on which the gate electrode is formed, a second wiring on the same surface as a surface on which the source and drain electrodes are formed, and a third wiring connecting the first wiring and the second wiring. The distance between an upper end portion and a lower end portion of the second wiring is longer than the distance between an upper end portion and a lower end portion of each of the source and drain electrodes. | 01-15-2015 |
20150015474 | Semiconductor Device, Driver Circuit, and Display Device - To provide a semiconductor device including a narrowed bezel obtained by designing a gate driver circuit. A gate driver of a display device includes a shift register unit, a demultiplexer circuit, and n signal lines. By connecting the n signal lines for transmitting clock signals to one stage of the shift register unit, (n−3) output signals can be output. The larger n becomes, the smaller the rate of signal lines for transmitting clock signals which do not contribute to output becomes; accordingly, the area of the shift register unit part is small compared to a conventional structure in which one stage of a shift register unit outputs one output signal. Therefore, the gate driver circuit can have a narrow bezel. | 01-15-2015 |
20150016585 | SEMICONDUCTOR DEVICE - A semiconductor device includes first and second transistors having the same conductivity type and a circuit. One of a source and a drain of the first transistor is electrically connected to that of the second transistor. First and third potentials are supplied to the circuit through respective wirings. A second potential and a first clock signal are supplied to the others of the sources and the drains of the first and second transistors, respectively. A second clock signal is supplied to the circuit. The third potential is higher than the second potential which is higher than the first potential. A fourth potential is equal to or higher than the third potential. The first clock signal alternates the second and fourth potentials and the second clock signal alternates the first and third potentials. The circuit controls electrical connections between gates of the first and second transistors and the wirings. | 01-15-2015 |
20150034831 | IMAGING DEVICE AND OPERATION METHOD THEREOF - Provided is an imaging device that can correct an output value of a pixel circuit. The imaging device includes a pixel circuit, a current detection circuit, an A/D converter, one or more memory circuit portions, and an arithmetic circuit portion. The pixel circuit includes a transistor, a charge accumulation portion, and a light-receiving element. The memory circuit portion includes a first look-up table, a second look-up table, and a region where image data output from the arithmetic circuit portion is stored. The first look-up table stores data of potentials of the charge accumulation portion, which depends on the intensity of light. The second look-up table stores output data of the transistor, which depends on the potentials of the charge accumulation portion. | 02-05-2015 |
20150035777 | DISPLAY DEVICE - A display device with low power consumption is provided. Furthermore, a display device in which an image is displayed in a region that can be used in a folded state is provided. The conceived display device includes a display portion that can be opened and folded, a sensing portion that senses a folded state of the display portion, and an image processing portion that generates, when the display portion is in the folded state, an image in which a black image is displayed in part of the display portion. | 02-05-2015 |
20150060847 | Semiconductor Device - Provided is a semiconductor device including a transistor in which a first gate and a second gate are provided with a channel formation region provided therebetween and which achieves both control of the threshold voltage and an increase in the on-state current. In a period during which first voltage with which the transistor is turned off is supplied to the first gate, control voltage for controlling the threshold voltage is supplied to the second gate. In a period during which second voltage with which the transistor is turned on is supplied to the first gate, the second voltage is supplied to the first gate and voltage in which voltage based on change in the voltage of a signal supplied to the first gate is added to the control voltage is supplied to the second gate. | 03-05-2015 |
20150060871 | THIN FILM TRANSISTOR, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING THE SAME - A semiconductor element is operated without being affected even when the substrate is largely affected by heat shrink such as a large substrate. Furthermore, a thin film semiconductor circuit and a thin film semiconductor device each having the semiconductor element. Also, a semiconductor element is operated without being affected even if there is slight mask deviation. In view of them, a plurality of gate electrodes formed so as to overlap a lower concentration impurity region of a semiconductor layer than drain regions on a drain region side. Also, source regions and the drain regions corresponding to the respective gate electrodes are formed so that current flows in opposite directions each other through channel regions corresponding to the gate electrodes. Further, the number of the channel regions in which a current flows in a first direction is equal to the number of the channel regions in which a current flows in a direction opposite to the first direction. | 03-05-2015 |
20150061533 | LIGHT-EMITTING DEVICE - A light-emitting device in which variation in luminance among pixels is suppressed. The light-emitting device includes a pixel; a first circuit configured to generate a signal containing information on a value of current extracted from the pixel; and a second circuit configured to correct an image signal in accordance with the signal. The pixel includes a light-emitting element; a transistor for controlling supply of the current to the light-emitting element in accordance with the image signal; a first switch configured to control connection between a gate and a drain of the transistor or between the gate of the transistor and a wiring; and a second switch configured to control extraction of the current from the pixel. | 03-05-2015 |
20150062477 | DISPLAY DEVICE - A display device with less light leakage and excellent contrast is provided. A display device having a high aperture ratio and including a large-capacitance capacitor is provided. A display device in which wiring delay due to parasitic capacitance is reduced is provided. A display device includes a transistor over a substrate, a pixel electrode connected to the transistor, a signal line electrically connected to the transistor, a scan line electrically connected to the transistor and intersecting with the signal line, and a common electrode overlapping with the pixel electrode and the signal line with an insulating film provided therebetween. The common electrode includes stripe regions extending in a direction intersecting with the signal line. | 03-05-2015 |
20150070254 | DISPLAY DEVICE AND ELECTRONIC DEVICE INCLUDING DISPLAY DEVICE - Objects are to provide a display device the power consumption of which is reduced, to provide a self-luminous display device the power consumption of which is reduced and which is capable of long-term use in a dark place. A circuit is formed using a thin film transistor in which a highly-purified oxide semiconductor is used and a pixel can keep a certain state (a state in which a video signal has been written). As a result, even in the case of displaying a still image, stable operation is easily performed. In addition, an operation interval of a driver circuit can be extended, which results in a reduction in power consumption of a display device. Moreover, a light-storing material is used in a pixel portion of a self-luminous display device to store light, whereby the display device can be used in a dark place for a long time. | 03-12-2015 |
20150070258 | DISPLAY DEVICE - A scan line to which a selection signal or a non-selection signal is input from its end, and a transistor in which a clock signal is input to a gate, the non-selection signal is input to a source, and a drain is connected to the scan line are provided. A signal input to the end of the scan line is switched from the selection signal to the non-selection signal at the same or substantially the same time as the transistor is turned on. The non-selection signal is input not only from one end but also from both ends of the scan line. This makes it possible to inhibit the potentials of portions in the scan line from being changed at different times. | 03-12-2015 |
20150076473 | DISPLAY DEVICE - A display device having high display quality is provided. In the display device that includes a plurality of display regions having different normal directions, the arrangement directions of a plurality of subpixels included in pixels vary between the display regions. | 03-19-2015 |
20150077411 | LIGHT-EMITTING DEVICE - A light-emitting device is provided, which is capable of correcting variation in luminance among pixels due to variation in electrical characteristics, such as threshold voltage or mobility, among driving transistors in a period where image display is performed. The light-emitting device includes a pixel; a first circuit configured to generate a signal including information about a value of current extracted from the pixel; and a second circuit configured to correct an image signal in accordance with the signal. The pixel includes a light-emitting element; a transistor whose drain current has a value determined in accordance with the image signal; a first switch configured to control supply of the drain current to the light-emitting element; and a second switch configured to control extraction of the drain current from the pixel and control the supply of the drain current to the light-emitting element. | 03-19-2015 |
20150077676 | DISPLAY DEVICE AND ELECTRONIC DEVICE - An object of the invention is to provide a circuit technique which enables reduction in power consumption and high definition of a display device. A switch controlled by a start signal is provided to a gate electrode of a transistor, which is connected to a gate electrode of a bootstrap transistor. When the start signal is input, a potential is supplied to the gate electrode of the transistor through the switch, and the transistor is turned off. The transistor is turned off, so that leakage of a charge from the gate electrode of the bootstrap transistor can be prevented. Accordingly, time for storing a charge in the gate electrode of the bootstrap transistor can be shortened, and high-speed operation can be performed. | 03-19-2015 |