Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Haylock

David Norman Haylock, Victoria AU

Patent application numberDescriptionPublished
20090215083SELECTING, CULTURING AND CREATING LINEAGE COMMITTED HEMATOPOIETIC STEM CELLS - The present invention provides a method for selecting hematopoietic stem cells (HSCs) comprising providing an agent which binds to α9β1 integrin on the cell surface to a population of cells including HSCs and separating HSCs by virtue of the binding agent. The invention also provides a method of culturing a population of HSCs in the presence of an agent which binds to α9β1, wherein the agent inhibits differentiation of the HSCs. The invention also provides a method of producing a population of lineage committed cells comprising culturing HSCs in the presence of an agent which inhibits or prevents binding to α9β1.08-27-2009

David Norman Haylock, Melbourne AU

Patent application numberDescriptionPublished
20110020314IDENTIFYING HAEMATOPOIETIC STEM CELLS BASED ON CELL SURFACE MARKERS - The present invention relates to a method of identifying a haematopoietic stem cell (HSC) or progeny thereof comprising the steps of: obtaining a cell sample including HSC or progeny thereof; detecting the presence of at least one carbohydrate sequence having a sequence of at least one disaccharide repeat of glucuronic acid and N-acetylglucosamine or an equivalent thereof; and identifying a HSC or progeny thereof having the sequence or equivalent thereof. The invention also relates to methods of enriching cell populations for HSC or progeny thereof, for isolating HSC or progeny thereof and cell preparations obtained using the methods of their invention and their uses.01-27-2011

Patent applications by David Norman Haylock, Melbourne AU

James Alexander Haylock, East Sussex GB

Jonathan Haylock, Los Angeles, CA US

Patent application numberDescriptionPublished
20120115347CABLE CONNECTOR RETENTION CLIPS - Electrical devices may be tested using test equipment. A device may have an associated cable with a connector. The test equipment may have an associated cable with a connector. An adapter may have a pair of connectors. One of the adapter connectors may be connected to the connector of the cable associated with the device and the other of the adapter connectors may be connected to the connector of the cable that is associated with the tester. A retention clip may be attached to a groove in the adapter. Flexible members in the clip may each grasp an opposing side of the adapter within the groove. A retention member in the clip may bear against the connector on the cable that is associated with the device to hold the connectors for the device cable and the adapter together.05-10-2012
20120287792BIDIRECTIONAL RADIO-FREQUENCY PROBING - Wireless electronic devices may include wireless communications circuitry such as a transceiver, antenna, and other wireless circuitry. The transceiver may be coupled to the antenna through a bidirectional switch connector. The switch connector may mate with a corresponding radio-frequency test probe that is connected to radio-frequency test equipment. When the test probe is mated with the switch connector, the transceiver may be decoupled from the antenna. During transceiver testing, radio-frequency test signals may be conveyed between the test unit and the transceiver using the test probe. During antenna testing, radio-frequency test signals may be conveyed between the test unit and the antenna using the test probe. Transceiver testing and antenna testing may, if desired, be conducted in parallel using the test probe.11-15-2012
20130002517ELECTRONIC DEVICE WITH MAGNETIC ANTENNA MOUNTING - An electronic device may have magnetically mounted antenna structures. The electronic device may have a dielectric member against which one or more antennas are mounted. The dielectric member may be a cover glass layer that covers a display in the electronic device, a dielectric antenna window, or other dielectric structure. Each antenna may have an antenna support structure. Conductive antenna structures for the antenna may be mounted to the antenna support structure. The antennas may be cavity-backed planar inverted-F antennas. Portions of each antenna support structure may be configured to receive magnets. The magnets may be attracted towards ferromagnetic structures mounted on the dielectric member. As the magnets are attracted towards the ferromagnetic structure, the antennas may be held in place against the dielectric member.01-03-2013
20130127672Distributed Loop Antennas with Extended Tails - Electronic devices may be provided with antenna structures such as distributed loop antenna resonating element structures. A distributed loop antenna may be formed on an elongated dielectric carrier and may have a longitudinal axis. The distributed loop antenna may include a loop antenna resonating element formed from a sheet of conductive material that extends around the longitudinal axis. A gap may be formed in the sheet of conductive material. The gap may be located under an opaque masking layer on the underside of a display cover glass associated with a display. The loop antenna resonating element may have a main body portion that includes the gap and may have an extended tail portion that extends between the display and conductive housing structures. The main body portion and extended tail portion may be configured to ensure that undesired waveguide modes are cut off during operation of the loop antenna.05-23-2013
20130328730Methods for Forming Elongated Antennas With Plastic Support Structures for Electronic Devices - Electronic devices may be provided with antenna structures. The antenna structures may include an antenna support structure covered with patterned antenna traces. An antenna support structure may be mounted in an electronic device so that a surface of the antenna support structure that is covered with patterned antenna traces lies flush with a planar surface of the electronic device housing. A display cover layer or other planar structure may be attached to the surface of the antenna support structure and the planar surface of the housing adhesive. Injection molding and extrusion techniques may be used in forming a support structure with elongated parallel cavities. An injection molding tool may have a mold core supported by a support structure at one end, supporting engagement features at the ends of mating mold core structures, or support pins. Molded interconnect devices may be soldered to laser direct structuring components to form antennas.12-12-2013

Jonathan M. Haylock, Cupertino, CA US

Patent application numberDescriptionPublished
20140090203COAXIAL HINGE APPARATUS - A hinge apparatus includes an inner cylindrical housing having a first slot formed therethough extending between distal ends of the inner cylindrical housing, and an outer cylindrical housing having a second slot formed therethough extending between distal ends of the outer cylindrical housing and being configured to engage with the inner cylindrical housing. The first slot and second slot form unique paths which prevent complete alignment of the first slot and the second slot during axial rotation of the hinge apparatus.04-03-2014
20140325793COAXIAL HINGE APPARATUS - A hinge apparatus includes an inner cylindrical housing having a first slot formed therethough extending between distal ends of the inner cylindrical housing, and an outer cylindrical housing having a second slot formed therethough extending between distal ends of the outer cylindrical housing and being configured to engage with the inner cylindrical housing. The first slot and second slot form unique paths which prevent complete alignment of the first slot and the second slot during axial rotation of the hinge apparatus.11-06-2014

Jonathan M. Haylock, Los Angeles, CA US

Patent application numberDescriptionPublished
20130335285Conductive Gaskets With Internal Cavities - Electronic devices may be provided with conductive structures such as displays and conductive housing walls. Conductive gaskets may be used to form electrical paths between opposing conductive structures in an electronic device. During device assembly, a conductive gasket may be compressed between opposing conductive structures. The conductive gasket may be formed from a conductive gasket wall structure. The conductive gasket wall structure may surround and at least partly enclose an air-filled cavity. Conductive gasket wall structures may be formed from conductive fabric, dielectric sheets coated with metal, or other conductive wall materials. The interior of a conductive gasket may be hollow and completely devoid of supporting structures or may contain internal structures for biasing the conductive gasket wall outwards. Planar gaskets and gaskets with other cross sections may be provided.12-19-2013
20140055147Testing Systems with Automated Loading Equipment and Positioners - A test system may be provided in which devices under test are tested using radio-frequency test stations. A test station may include a test host, a test unit coupled to the test host, and a shielded enclosure. The shielded enclosure may contain a test antenna coupled to the test unit via a radio-frequency cable. A computer-controlled loading arm may be used to place a device under test on a positioner within the test enclosure. The test enclosure may have an enclosure door that is opened and closed using a computer-controlled pneumatic cylinder. When the enclosure door is closed, a portion of the enclosure door may actuate one or more levers on the positioner, which may in turn actuate one or more positioning arms to press the device under test against one or more guide surfaces on the positioner, thereby precisely positioning the device under test within the test enclosure.02-27-2014
20140141726Robotic Wireless Test System - A test system may include a wireless test chamber with metal walls lined with pyramidal absorbers. A trapdoor may be provided in a wall opening to accommodate a robotic arm. The robotic arm may have grippers that grip a device under test or a support structure that is supporting a device under test. The robotic arm may move the device under test to a docking station for automatic battery charging during testing. When it is desired to perform wireless tests on a device under test, the robotic arm may move the device under test through the trapdoor into an interior portion of the test chamber. A turntable and movable test antenna may be used to rotate the device under test while varying angular orientations between test antenna and device under test. Emitted radiation levels can be measured using a liquid filled phantom and test probe on a robotic arm.05-22-2014

Luke Haylock, Culver City, CA US

Patent application numberDescriptionPublished
20090053006BLIND FASTENER AND NOSE ASSEMBLY FOR INSTALLATION THEREOF - A blind fastener for securing a plurality of workpieces is disclosed. The blind fastener comprises several components, a core bolt, a body sleeve member and a buckle sleeve member. The core bolt includes a tool engaging portion to engage the head of a driver on a installation tool. The buckle sleeve member has a buckle portion designed to create a bulb fastening the workpieces together. In some embodiments, a the buckle portion is locally annealed to promote formation of a blind side bulb. A nose assembly with a matching anti-rotation engagement to the head of the body sleeve member is also disclosed.02-26-2009
20100270513CONDUCTIVE SOLID FILM MATERIAL - A coating composition including a base composition, comprising at least one organic material and a plurality of carbon nano-tubes, wherein a concentration of the carbon nano-tubes is between 0.05 to 30 percent of a total weight of the coating composition, wherein the base composition comprises: i) methyl ethyl keton, ii) phenolic resin, and iii) ethyl alcohol, wherein each of the plurality of carbon nano-tubes has a length up to about 1.0 mm, wherein a diameter of each of the plurality of carbon nano-tubes is in a range from about 3 nm to about 200 nm, wherein the coating composition has a volume resistivity in a range from about 1×1010-28-2010
20100272537FASTENERS WITH CONFORMING SLEEVES - A sleeve interference fastener including a conformable sleeve, wherein the conformable sleeve is comprised of at least one first material having a hardness of X, and a pin member, wherein the pin member is comprised of at least one second material having a hardness of Y, wherein X is sufficiently less than Y so that, in an installed position of an interference fit, at least a portion of the at least one first material of the conformable sleeve conforms to a contour of an inner surface of a hole of a composite structure so as to create a continuous electrical contact at an interface between the inner surface of the hole of the composite structure and the conformable sleeve.10-28-2010
20110142567ENHANCED CONDUCTIVITY SLEEVED FASTENER AND METHOD FOR MAKING SAME - A sleeve interference fastener adapted to be installed in a hole of a structure includes a sleeve; a pin member, wherein the pin member has a transition zone between a shank portion and a locking portion and wherein a portion of the pin member comprises a low friction dielectric coating; a locking member; wherein, in the installed position, a first interface between the shank portion of the pin member and the sleeve is substantially free from the low friction dielectric coating, and wherein, in the installed position, the transition zone of the pin member and a second interface between the locking portion of the pin member and the locking member are substantially covered with the low friction dielectric coating.06-16-2011
20120027536RETAINER RING - A retainer ring including an outer ring having an exterior surface, an interior surface, and a plurality of spring beam elements extending inwardly from the interior surface, and a central aperture. Each of the spring beam elements includes an elongated arm having a first end attached to the interior surface of the outer ring and a second, free end opposite the first end. Each of free ends of the arms includes a tab portion and a pressure pad that extends from the tab portion. The retainer ring captivates pin members, such as bolts, onto work pieces, such that the pressure pads engage and align with an annular groove of the bolt. When the bolt engages the retainer ring, each of the spring beam elements is displaced and expands radially from a free position to an expanded position in order to enable the bolt to travel through the aperture. The retainer ring captivates the bolt onto the work piece, while providing a positive hold out of the bolt.02-02-2012
20120027537CAPTIVE PANEL FASTENER ASSEMBLY - A fastener including a bolt and a grommet assembly attached to the bolt for fastening to a work piece. The grommet assembly includes an upper grommet, a lower grommet attached to the upper grommet, a retainer ring, and a housing that houses the retainer ring within the lower grommet. The upper grommet is inserted into a hole at one side of the work piece and the lower grommet is attached to the upper grommet through the hole at an opposite side of the work piece. The retainer ring is inserted into the lower grommet and encapsulated by the housing. The bolt is inserted into the grommet assembly, and the retainer ring engages the bolt such that a plurality of pressure pads extending from a plurality of corresponding spring beam elements of the retainer ring reside in an annular groove of the bolt. The grommet assembly captivates the bolt onto the work piece, while providing a positive hold out of the bolt.02-02-2012
20130330148CAPTIVE PANEL FASTENER ASSEMBLY - A fastener assembly for installation within a work piece, the fastener assembly including a bolt, a retainer ring, and a housing that houses the retainer ring. The housing is positioned at and engages one side of the work piece, while the bolt is inserted into a hole of the work piece on an opposite side thereof. The retainer ring engages the bolt such that a plurality of pressure pads extending from a plurality of corresponding spring beam elements of the retainer ring reside in an annular groove of the bolt. The housing captivates the bolt onto the work piece, while providing a positive hold out of the bolt.12-12-2013
20140050551VARIABLE WALL THICKNESS COLLAR - A collar having a shank with an interior surface and an exterior surface. The exterior surface of the shank includes a first exterior surface extending from the first end to a first exterior inflection point, and a curvilinear exterior surface extending from the first exterior inflection point to a second exterior inflection point. The curvilinear exterior surface and an imaginary line extending from the first exterior inflection point to the second exterior inflection point form a first area that is sized and shaped to receive forward extrusion of the collar as the collar is being installed.02-20-2014
20140079506FASTENERS WITH CONFORMING SLEEVES - A sleeve interference fastener including a conformable sleeve, wherein the conformable sleeve is comprised of at least one first material having a hardness of X, and a pin member, wherein the pin member is comprised of at least one second material having a hardness of Y, wherein X is sufficiently less than Y so that, in an installed position of an interference fit, at least a portion of the at least one first material of the conformable sleeve conforms to a contour of an inner surface of a hole of a composite structure so as to create a continuous electrical contact at an interface between the inner surface of the hole of the composite structure and the conformable sleeve.03-20-2014

Patent applications by Luke Haylock, Culver City, CA US

Robert Haylock, Carnegie AU

Patent application numberDescriptionPublished
20080243924System and method for efficient delivery of data content - A method of delivering video on demand content, including multicasting content to a plurality of client devices with storage, including instances where delivery begins mid-stream, and recovery mechanisms for missing content. Some embodiments include defining content as mandatory and involuntarily delivering the mandatory content. Some embodiments include a carousel with a plurality of data sets, delivering each of the data sets in sequence, and then beginning repeating delivery circularly from the beginning of the sequence. Various exemplary embodiments include one or more of the following: storing a title at each client device; repeating various steps for more multiple titles; and monitoring for a required action such as downloading a new title, deleting an old title, or changing the rate of data transfer, and performing the required action.10-02-2008

William David Haylock, Cambridgeshire GB

Patent application numberDescriptionPublished
20140211095DIGITAL VIDEO AND DATA TRANSMISSION - Apparatus and methods for transmitting digital video data and auxiliary data over a four twisted wire pair cable, and systems using such apparatus, are described. A first, second and third digital video colour signal and a digital video timing signal are transmitted using differential mode signalling over a first, second, third and fourth twisted wire pair of a cable. Auxiliary data is sent over a data channel using common mode signalling over a first pair of the four twisted wire pairs of the cable. A common mode choke can be used to add or remove a signal sent using the common mode signalling from a pair of wires also used to transmit one of the digital video colour or digital video timing signals.07-31-2014
Website © 2015 Advameg, Inc.