Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Guanghong Zheng, Westlake US

Guanghong Zheng, Westlake, OH US

Patent application numberDescriptionPublished
20090233167Capacity Increasing Current Collector and Fuel Gauge for Lithium-Containing Electrochemical Cell - An electrochemical battery cell having a negative electrode, such as a negative electrode, including lithium, that is provided with a fuel gauge or end of life indicator capable of generating a voltage step preferably indicating that the cell is close to the end of its life and should be replaced, wherein the voltage step is detectable by a device associated with the cell. Additional capacity is added to the cell by utilizing a current collector comprising a consumable electrochemically active material having a lower potential than the electrochemically active material of the associated electrode, such as lithium, and a discharge voltage above a predetermined cut-off voltage.09-17-2009
20100040941Flexible Thin Printed Battery and Device and Method of Manufacturing Same - A flat, flexible electrochemical cell is provided. The within invention describes various aspects of the flat, flexible electrochemical cell. A printed anode is provided that obviates the need for a discrete anode current collector, thereby reducing the size of the battery. An advantageous electrolyte is provided that enables the use of a metallic cathode current collector, thereby improving the performance of the battery. Printable gelled electrolytes and separators are provided, enabling the construction of both co-facial and co-planar batteries. Cell contacts are provided that reduce the potential for electrolyte creepage in the flat, flexible electrochemical cells of the within invention.02-18-2010
20100209756Flexible Thin Printed Battery and Device and Method of Manufacturing Same - A flat, flexible electrochemical cell is provided. The within invention describes various aspects of the flat, flexible electrochemical cell. A printed anode is provided that obviates the need for a discrete anode current collector, thereby reducing the size of the battery. An advantageous electrolyte is provided that enables the use of a metallic cathode current collector, thereby improving the performance of the battery. Printable gelled electrolytes and separators are provided, enabling the construction of both co-facial and co-planar batteries. Cell contacts are provided that reduce the potential for electrolyte creepage in the flat, flexible electrochemical cells of the within invention.08-19-2010
20100250164Battery End of Life Determination - A method for determining an end of life of a battery includes determining a discharge capacity of the battery at a given moment in time, determining a discharge capacity at a functional endpoint of the battery, and determining a fuel remaining in the battery at the given moment in time as a function of both the discharge capacity at the given moment in time and the discharge capacity of the battery at the functional endpoint of the battery. The determined fuel remaining is indicative of an end of life of the battery.09-30-2010
20110194992Fuel Cell Cartridge - A hydrogen gas generating apparatus for providing hydrogen gas to a fuel cell stack is provided. The apparatus includes an expandable reaction chamber containing a solid reactant component and a collapsible receptacle containing a liquid reactant component with a housing. The reaction chamber includes an expandable reactant zone defined by a moveable partition that retains the reactants and reaction products within the reaction chamber. The apparatus also includes a liquid transport control system and a fluid path for transporting the liquid reactant component from the collapsible receptacle to the reactant zone in the reaction chamber, where the liquid and solid reactant components react to generate hydrogen gas. The receptacle collapses with a corresponding expansion of the reaction chamber as liquid reactant component is used, and the reactant zone expands within the reaction chamber in response to pressure from the increasing volume of reaction products on the moveable partition. Volume exchange among the expandable reaction chamber, the expandable reactant zone and the collapsible receptacle provides a high volume of hydrogen gas from a hydrogen generating apparatus of limited volume.08-11-2011
20110274959Flexible Thin Printed Battery and Device and Method of Manufacturing Same - A flat, flexible electrochemical cell is provided. The within invention describes various aspects of the flat, flexible electrochemical cell. A printed anode is provided that obviates the need for a discrete anode current collector, thereby reducing the size of the battery. An advantageous electrolyte is provided that enables the use of a metallic cathode current collector, thereby improving the performance of the battery. Printable gelled electrolytes and separators are provided, enabling the construction of both co-facial and co-planar batteries. Cell contacts are provided that reduce the potential for electrolyte creepage in the flat, flexible electrochemical cells of the within invention.11-10-2011
20120107666Flexible Thin Printed Battery and Device and Method of Manufacturing Same - A flat, flexible electrochemical cell is provided. The within invention describes various aspects of the flat, flexible electrochemical cell. A printed anode is provided that obviates the need for a discrete anode current collector, thereby reducing the size of the battery. An advantageous electrolyte is provided that enables the use of a metallic cathode current collector, thereby improving the performance of the battery. Printable gelled electrolytes and separators are provided, enabling the construction of both co-facial and co-planar batteries. Cell contacts are provided that reduce the potential for electrolyte creepage in the flat, flexible electrochemical cells of the within invention.05-03-2012
20120269694Hydrogen Generator with Improved Volume Efficiency - A hydrogen generator with improved volume efficiency and a method of producing hydrogen gas with the hydrogen generator are disclosed. A fluid containing a reactant is transported from a reactant storage area to a reaction area. Hydrogen gas and an effluent pass from the reaction area into the effluent storage area that is in a volume exchanging relationship with one or both of the reactant storage area and the reaction area. An initially compressed filter is disposed in the effluent storage area to remove solids from the hydrogen gas. The filter is attached to a moveable partition separating the effluent storage area from the reactant storage area and/or the reaction area, and the filter expands as the volume of the effluent storage area increases.10-25-2012
20130004865Hydrogen Gas Generator - The invention is a hydrogen generator with a liquid reservoir, a reaction area, a byproduct containment area and a hydrogen containment area within a housing. A liquid from the liquid reservoir can react within the reaction area to produce hydrogen gas and byproducts, which flow to the byproduct containment area, and hydrogen gas passes into the hydrogen containment area and is released from the housing through a hydrogen outlet as needed. The liquid reservoir and the reaction area are each within a container made of a liquid impermeable material, the byproduct containment area is within a flexible container made of a hydrogen permeable, liquid impermeable material, and the hydrogen containment area is within a flexible container made of a hydrogen impermeable material. The byproduct containment area is in a volume exchanging relationship with one or both of the liquid reservoir and the reaction area.01-03-2013
20130108940Hydrogen Generator05-02-2013
20140050625Hydrogen Generator Having Liquid Delivery Member - A hydrogen generator is provided for generating hydrogen gas for a fuel cell stack. The hydrogen generator includes container, and a first reactant storage area configured to contain a liquid first reactant. The hydrogen generator also includes a reaction area and a solid second reactant within the reaction area, and a hydrogen outlet. The hydrogen generator further includes a flexible liquid delivery member extending into the reaction area and configured to deliver liquid reactant from the first reactant storage area to the reaction area. The flexible liquid delivery member includes a flexible portion that flexes to allow the delivery member to move with the solid second reactant as the second reactant is consumed.02-20-2014
20140056772Hydrogen Generator Having Reactant Pellet with Concentration Gradient - A hydrogen generator is provided for generating hydrogen gas for a fuel cell stack. The hydrogen generator includes a container, and a liquid reactant storage area configured to contain a liquid including a first reactant. The hydrogen generator also includes a reaction area within the container, and a solid containing a second reactant within the reaction area and having a concentration gradient that varies along an axis such as length of the solid. The hydrogen generator further includes a liquid delivery member for delivering the liquid to the solid in the reaction area to generate hydrogen. The concentration gradient controls a reaction rate of the first and second reactants.02-27-2014
20140154171Hydrogen Generation from Stabilized Alane - A hydrogen generator and a method of producing hydrogen gas using stabilized aluminum hydroxide and water are disclosed. The hydrogen generator contains stabilized aluminum hydride, water, a base, and a reaction chamber within which at least a portion of the stabilized aluminum hydride reacts with at least a portion of the water to produce hydrogen gas. The water that reacts with the stabilized aluminum hydride is contained in a basic aqueous solution including at least a portion of the base. The base can be included with the water in the basic aqueous solution, stored in a reservoir separate from the stabilized aluminum hydroxide, or the base can be a solid contained in a mixture with the stabilized aluminum hydroxide and mix with water when added to the mixture to form the basic aqueous solution.06-05-2014
20140248185Method of Generating Hydrogen Gas - Methods for generating hydrogen gas and related systems are disclosed. Aspects of methods include providing a solid reactant component to an expandable reactant zone within an expandable reaction chamber, providing a liquid reactant component to a collapsible receptacle, controllably transporting the liquid reactant component in the collapsible receptacle to the expandable reaction chamber, and reacting the liquid reactant component with the solid reactant component. In some instances, components are configured for volume exchange among the expandable reaction chamber, the expandable reactant zone, and the collapsible receptacle.09-04-2014
20140248546HYDROGEN GENERATOR FOR A FUEL CELL - A hydrogen generator includes a housing, a pellet strip with a plurality of pellets disposed on a flexible carrier, the pellets including a hydrogen containing material that will release hydrogen gas when heated. A feed system feeds the pellet strip to sequentially position one or more pellets in proximity to a heater that heats the pellets to release hydrogen gas. The pellet strip can be folded or wound on a reel, stored in a compartment in the hydrogen generator or in a user-replaceable container. The hydrogen generator can be part of a fuel cell system that includes the hydrogen generator and a fuel cell battery.09-04-2014
20140295304METHODS OF GENERATING HYDROGEN GAS AND POWER - A hydrogen generator and a fuel cell system including a fuel cell battery and the hydrogen generator. The hydrogen generator includes a cartridge, a housing with a cavity to removably contain the cartridge, and an initiation system. The cartridge includes a casing; a plurality of pellets including a hydrogen containing material; a plurality of solid heat transfer members in contact with but not penetrating the casing; a hydrogen outlet in the casing; and a hydrogen flow path from each pellet to the hydrogen outlet. A plurality of heating elements is disposed inside the housing. When the cartridge is in the cavity, each heating element is disposed so heat can be conducted from the heating element and through the casing and corresponding heat transfer member to initiate the release of hydrogen gas. The initiation system can selectively heat one or more pellets to release hydrogen gas as needed.10-02-2014
20150023846Hydrogen Generator - A hydrogen generator and a fuel cell system including a fuel cell battery and the hydrogen generator. The hydrogen generator includes a cartridge, a housing with a cavity to removably contain the cartridge, and an initiation system. The cartridge includes a casing; a plurality of pellets including a hydrogen containing material; a plurality of solid heat transfer members in contact with but not penetrating the casing; a hydrogen outlet in the casing; and a hydrogen flow path from each pellet to the hydrogen outlet. A plurality of heating elements is disposed inside the housing. When the cartridge is in the cavity, each heating element is disposed so heat can be conducted from the heating element and through the casing and corresponding heat transfer member to initiate the release of hydrogen gas. The initiation system can selectively heat one or more pellets to release hydrogen gas as needed.01-22-2015

Patent applications by Guanghong Zheng, Westlake, OH US

Website © 2015 Advameg, Inc.