Patent application number | Description | Published |
20120186664 | Water Uptake Measurement System - A water uptake measurement system for measuring uptake of a fluid by a sample includes a sample chamber, a suspension component and a supply interface. A suspension aperture is located at a first end of the sample chamber and extends from an outer surface of the sample chamber to an inner surface of the sample chamber. The suspension component passes through the suspension aperture and is configured to support the sample within the internal cavity such that the sample is spaced apart from the inner surface of the sample chamber. The supply interface is configured to deliver the fluid to the internal cavity of the sample chamber. | 07-26-2012 |
20120186994 | FLUID DISTRIBUTION ASSEMBLY FOR TESTING SYSTEMS - Disclosed herein are fluid distribution methods and assemblies for supplying fluid to test assemblies. One embodiment of a fluid distribution assembly comprises at least two input lines each configured to supply a fluid. A source selection component is connected to the input lines and configured to receive the fluid of the input lines and select from the fluids a target fluid. A range selection component is configured to receive the target fluid and to select a flow range of the target fluid, outputting the target fluid to a flow component comprising a first flow adjustment component having a first flow rate resolution and a second flow adjustment component having a second flow rate resolution. The range selection component is configured to selectively output the target fluid to one of the first flow adjustment component and the second flow adjustment component based on the selected flow range. | 07-26-2012 |
20120208106 | CATALYST INK PREPARATION FOR FUEL CELL ELECTRODE FABRICATION - Methods of fabricating gas diffusion electrodes and gas diffusion electrodes made from such methods are disclosed herein. One method of fabricating a gas diffusion electrode for a fuel cell comprises preparing a catalyst ink of a predetermined viscosity. Preparing the catalyst ink comprises mixing a catalyst solution comprising catalyst particles, an ionomer and a solvent at a first speed for a first period of time and homogenizing the catalyst solution at a second speed in a temperature controlled environment for a second period of time, wherein the second period of time is longer than the first period of time, the second period of time and the second speed selected to preserve a structure of the catalyst particles during homogenization. An active electrode layer is formed by spraying the catalyst ink directly on a gas diffusion layer in a single application and a uniform loading. | 08-16-2012 |
20140120433 | Apparatus and Method of In-Situ Measurement of Membrane Fluid Crossover - Assemblies and methods for measuring in-situ membrane fluid crossover are provided. One embodiment of an in-situ fuel cell membrane crossover measurement assembly as disclosed herein comprises an anode fluid supply configured to supply anode fluid to an anode side of a proton exchange membrane; a cathode fluid supply configured to supply cathode fluid to a cathode side of the proton exchange membrane; a collection chamber configured to receive an exhaust from one of the anode side and the cathode side of the proton exchange membrane; and means for detecting a crossover fluid in the exhaust. The crossover fluid is from the cathode fluid if the exhaust is collected from the anode side and the crossover fluid is from the anode fluid if the exhaust is collected from the cathode side. | 05-01-2014 |
20140120442 | Apparatus and Method of In-Situ Measurement of Membrane Fluid Crossover - Systems and methods for measuring in-situ membrane fluid crossover are provided. One embodiment of a system for diagnosing in situ degradation of membranes in a fuel cell stack comprises an inert gas supply configured to be connected to the fuel cell stack to supply an inert gas to an anode side of the fuel cell stack during diagnosis and means for detecting an amount of crossover cathode gas in exhaust from the anode side of the fuel cell stack during diagnosis. | 05-01-2014 |
20150093684 | FUEL CELL MEMBRANE WITH CROSSOVER BARRIER - Embodiments of fuel cells and their membrane electrode assemblies are provided, as well as methods for preparing the membrane electrode assemblies. One embodiment of a membrane electrode assembly comprises an anode catalyst layer, a cathode catalyst layer, a polymer electrolyte membrane between the anode catalyst layer and the cathode catalyst layer and a gas barrier layer between the polymer electrolyte membrane and the anode catalyst layer. The gas barrier layer comprises a proton conductive material and is configured to prevent crossover of gas through the polymer electrolyte membrane to the cathode catalyst layer. | 04-02-2015 |
20150221954 | TEMPLATED NON-CARBON METAL OXIDE CATALYST SUPPORT - Non-corrosive, non-carbon metal oxide support particles are formed with pre-shaped, templated vacancies. Electrocatalysts, membrane electrode assemblies and fuel cells can be produced with the templated non-corrosive, non-carbon metal oxide support particles. | 08-06-2015 |
20150221955 | NON-CARBON MIXED-METAL OXIDE ELECTROCATALYSTS - Electrocatalysts having non-corrosive, non-carbon support particles are provided as well as the method of making the electrocatalysts and the non-corrosive, non-carbon support particles. Embodiments of the non-corrosive, non-carbon support particle consists essentially of titanium dioxide and ruthenium dioxide. The electrocatalyst can be used in fuel cells, for example. | 08-06-2015 |
20150221990 | LITHIUM SULFUR BATTERY PULSE CHARGING METHOD AND PULSE WAVEFORM - Provided are methods and apparatus for charging a lithium sulfur (Li—S) battery. The Li—S battery has at least one unit cell comprising a lithium-containing anode and a sulfur-containing cathode with an electrolyte layer there between. One method provides controlled application of voltage pulses at the beginning of the charging process. An application period is initiated after a discharge cycle of the Li—S battery is complete. During the application period, voltage pulses are provided to the Li—S battery. The voltage pulses are less than a constant current charging voltage. Constant current charging is initiated after the application period has elapsed. | 08-06-2015 |
20150221991 | LITHIUM SULFUR BATTERY CATHODE ELECTRODE SURFACE TREATMENT DURING DISCHARGE - Methods and apparatus are provided for discharging a Li—S battery having at least one battery unit comprising a lithium-containing anode and a sulfur-containing cathode with an electrolyte layer there between. One method comprises electrochemically surface treating the sulfur-containing cathode during discharge of the battery. A method of electrochemically surface treating a cathode of a lithium-sulfide battery comprises applying at least one oxidative voltage pulse during a pulse application period while the lithium-sulfur battery discharges and controlling pulse characteristics during the pulse application period, the pulse characteristics configured to affect a morphology of lithium sulfide forming on the sulfur-containing cathode during discharge. | 08-06-2015 |