Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Gilbert, AZ

Arthur Scott Gilbert, Scottsdale, AZ US

Patent application numberDescriptionPublished
20100049658SECURE ELECTRONIC TRANSACTION SYSTEM - Systems and methods for the secure processing of electronic transactions are disclosed. In accordance with an exemplary embodiment, a system and method for the secure processing of electronic transactions comprises: receiving, by a POS terminal, information for a financial transaction card; receiving, by the POS terminal, information for a financial transaction; encrypting, by the POS terminal, the financial card information and the financial transaction information into a first encrypted message; transmitting the first encrypted message to a regional chassis; encrypting, by the regional chassis, the first encrypted message into a second encrypted message; transmitting the second encrypted message to a central chassis; decrypting, by the central chassis, the second encrypted message into a decrypted message; and transmitting the decrypted message to a host processor for authorization.02-25-2010

Charles C. Gilbert, Tucson, AZ US

Patent application numberDescriptionPublished
20130241788Ridged Waveguide Flared Radiator Antenna - Presently disclosed is an antenna system having an array of ridged waveguide Vivaldi radiator (RWVR) antenna elements fed through a corporate network of suspended air striplines (SAS). The SAS transfers the electromagnetic energy to the radiating element via the ridged waveguide coupler. The Vivaldi radiator matches the output impedance of the ridged waveguide coupler/SAS to the impedance of the surrounding medium. Because the coupling method and the radiating elements are wideband mediums, this antenna array is capable of wideband operation. The physical dimensions of the resulting array are also not as sensitive to its electrical performance as other antenna designs since the bandwidth is quite large, reducing the occurrence of an out-of-specification antenna due to manufacturing tolerance build-up. This also reduces the complexity of the manufacturing process, which in turn lowers cost.09-19-2013

Charles G. Gilbert, Tucson, AZ US

Patent application numberDescriptionPublished
20130241791Ridged Waveguide Flared Radiator Array Using Electromagnetic Bandgap Material - Presently disclosed is an antenna system having an array of ridged waveguide Vivaldi radiator (RWVR) antenna elements fed through a corporate network of suspended air striplines (SAS) with an electromagnetic bandgap (EBG) ground plane surrounding the ridged waveguide transition. The SAS transfers the electromagnetic energy to the radiating element via the ridged waveguide coupler. The Vivaldi radiator matches the output impedance of the ridged waveguide coupler/SAS to the intrinsic impedance of the surrounding medium. The EBG, which may be comprised of a photonic bandgap material or other metamaterial, allows for better frequency and bandwidth performance in a lower-profile array package, thereby reducing size and weight of the array for applications requiring small size and or low-inertia packaging. In alternate embodiments, radiating elements other than Vivaldi radiators may be used. This configuration also reduces the complexity of the manufacturing process, which in turn lowers cost.09-19-2013
20140009346Scanned Antenna Having Small Volume and High Gain - A scanned radio frequency (RF) antenna having a small volume is described.01-09-2014
20150029062Polarization Dependent Electromagnetic Bandgap Antenna And Related Methods - A rotationally polarized antenna includes a radiating element that is held in a skewed orientation with respect to an underlying polarization-dependent electromagnetic band gap (PDEBG) structure. The radiating element and the PDEBG structure are both housed within a conductive cavity. The radiating element, the PDEBG structure, and the cavity are designed together to achieve an antenna having improved operational characteristics (e.g., an enhanced circular polarization bandwidth, etc.). In some embodiments, the antenna may be implemented as a flush mounted or conformal antenna on an outer surface of a supporting platform.01-29-2015

Patent applications by Charles G. Gilbert, Tucson, AZ US

Douglas J. Gilbert, Flagstaff, AZ US

Patent application numberDescriptionPublished
20110082041HIGH TEMPERATURE SUPERCONDUCTING MATERIALS AND METHODS FOR MODIFYING AND CREATING SAME - In some implementations of the invention, existing high temperature superconducting materials (“HTS materials”) may be modified and/or new HTS materials may be created by enhancing (in the case of existing HTS materials) and/or creating (in the case of new HTS materials) an aperture within the HTS material such that the aperture is maintained at increased temperatures so as not to impede propagation of electrical charge there through. In some implementations of the invention, as long as the propagation of electrical charge through the aperture remains unimpeded, the material should remain in a superconducting state; otherwise, as the propagation of electrical charge through the aperture becomes impeded, the HTS material begins to transition into a non-superconducting state.04-07-2011
20110082042EXTREMELY LOW RESISTANCE FILMS AND METHODS FOR MODIFYING AND CREATING SAME - Operational characteristics of an extremely low resistance (“ELR”) film comprised of an ELR material may be improved by depositing a modifying material onto appropriate surfaces of the ELR film to create a modified ELR film. In some implementations of the invention, the ELR film may be in the form of a “c-film.” In some implementations of the invention, the ELR film may be in the form of an “a-b film,” an “a-film” or a “b-film.” The modified ELR film has improved operational characteristics over the ELR film alone or without the modifying material. Such operational characteristics may include operating in an ELR state at increased temperatures, carrying additional electrical charge, operating with improved magnetic properties, operating with improved mechanic properties or other improved operational characteristics. In some implementations of the invention, the ELR material is a mixed-valence copper-oxide perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.04-07-2011
20110082044HIGH TEMPERATURE SUPERCONDUCTING FILMS AND METHODS FOR MODIFYING AND CREATING SAME - Operational characteristics of an high temperature superconducting (“HTS”) film comprised of an HTS material may be improved by depositing a modifying material onto appropriate surfaces of the HTS film to create a modified HTS film. In some implementations of the invention, the HTS film may be in the form of a “c-film.” In some implementations of the invention, the HTS film may be in the form of an “a-b film,” an “a-film” or a “b-film.” The modified HTS film has improved operational characteristics over the HTS film alone or without the modifying material. Such operational characteristics may include operating in a superconducting state at increased temperatures, carrying additional electrical charge, operating with improved magnetic properties, operating with improved mechanic properties or other improved operational characteristics. In some implementations of the invention, the HTS material is a mixed-valence copper-oxide perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.04-07-2011
20110082045EXTREMELY LOW RESISTANCE MATERIALS AND METHODS FOR MODIFYING AND CREATING SAME - In some implementations of the invention, existing extremely low resistance materials (“ELR materials”) may be modified and/or new ELR materials may be created by enhancing (in the case of existing ELR materials) and/or creating (in the case of new ELR materials) an aperture within the ELR material such that the aperture is maintained at increased temperatures so as not to impede propagation of electrical charge there through. In some implementations of the invention, as long as the propagation of electrical charge through the aperture remains unimpeded, the material should remain in an ELR state; otherwise, as the propagation of electrical charge through the aperture becomes impeded, the ELR material begins to transition into a non-ELR state.04-07-2011
20110268918EXTREMELY LOW RESISTANCE COMPOSITION AND METHODS FOR CREATING SAME - The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.11-03-2011
20120252676Extremely Low Resistance Compositions and Methods for Creating Same - The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to BSSCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.10-04-2012
20120258864EXTREMELY LOW RESISTANCE COMPOSITION AND METHODS FOR CREATING SAME - The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.10-11-2012
20130196858Extremely Low Resistance Compositions and Methods for Creating Same - The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to BSSCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.08-01-2013
20140113828ELECTRICAL, MECHANICAL, COMPUTING/ AND/OR OTHER DEVICES FORMED OF EXTREMELY LOW RESISTANCE MATERIALS - Electrical, mechanical, computing, and/or other devices that include components formed of extremely low resistance (ELR) materials, including, but not limited to, modified ELR materials, layered ELR materials, and new ELR materials, are described.04-24-2014
20140329686EXTREMELY LOW RESISTANCE COMPOSITIONS AND METHODS FOR CREATING SAME - The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to BSCCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.11-06-2014
20140336053EXTREMELY LOW RESISTANCE FILMS AND METHODS FOR MODIFYING AND CREATING SAME - Operational characteristics of an extremely low resistance (“ELR”) film comprised of an ELR material may be improved by depositing a modifying material onto appropriate surfaces of the ELR film to create a modified ELR film. In some implementations of the invention, the ELR film may be in the form of a “c-film.” In some implementations of the invention, the ELR film may be in the form of an “a-b film,” an “a-film” or a “b-film.” The modified ELR film has improved operational characteristics over the ELR film alone or without the modifying material. Such operational characteristics may include operating in an ELR state at increased temperatures, carrying additional electrical charge, operating with improved magnetic properties, operating with improved mechanic properties or other improved operational characteristics. In some implementations of the invention, the ELR material is a mixed-valence copper-oxide perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.11-13-2014
20140336054HIGH TEMPERATURE SUPERCONDUCTING FILMS AND METHODS FOR MODIFYING AND CREATING SAME - Operational characteristics of an high temperature superconducting (“HTS”) film comprised of an HTS material may be improved by depositing a modifying material onto appropriate surfaces of the HTS film to create a modified HTS film. In some implementations of the invention, the HTS film may be in the form of a “c-film.” In some implementations of the invention, the HTS film may be in the form of an “a-b film,” an “a-film” or a “b-film.” The modified HTS film has improved operational characteristics over the HTS film alone or without the modifying material. Such operational characteristics may include operating in a superconducting state at increased temperatures, carrying additional electrical charge, operating with improved magnetic properties, operating with improved mechanic properties or other improved operational characteristics. In some implementations of the invention, the HTS material is a mixed-valence copper-oxide perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.11-13-2014
20140364319Extremely Low Resistance Materials and Methods for Modifying or Creating Same - In some implementations of the invention, existing extremely low resistance materials (“ELR materials”) may be modified and/or new ELR materials may be created by enhancing (in the case of existing ELR materials) and/or creating (in the case of new ELR materials) an aperture within the ELR material such that the aperture is maintained at increased temperatures so as not to impede propagation of electrical charge there through. In some implementations of the invention, as long as the propagation of electrical charge through the aperture remains unimpeded, the material should remain in an ELR state; otherwise, as the propagation of electrical charge through the aperture becomes impeded, the ELR material begins to transition into a non-ELR state.12-11-2014

Patent applications by Douglas J. Gilbert, Flagstaff, AZ US

James Robert Gilbert, Mesa, AZ US

Patent application numberDescriptionPublished
20110066297REMOTE MONITORING AND CONTROL SYSTEM COMPRISING MESH AND TIME SYNCHRONIZATION TECHNOLOGY - A remote monitoring and control system comprising synchronized wireless MESH technology for remote monitoring and control of utility grids (e.g., utility meters), commodity distribution networks, industrial equipment, and infrastructure including remote disconnection/connection and self-generating power.03-17-2011

Nad Edward Gilbert, Gilbert, AZ US

Patent application numberDescriptionPublished
20140254238SENSING DATA IN RESISTIVE SWITCHING MEMORY DEVICES - Structures and methods of operating a resistive switching memory device are disclosed herein. In one embodiment, a resistive switching memory device can include: (i) a plurality of resistive memory cells, where each of the resistive switching memory cells is configured to be programmed to a low resistance state by application of a first voltage in a forward bias direction, and to be erased to a high resistance state by application of a second voltage in a reverse bias direction; and (ii) a sensing circuit coupled to at least one of the plurality of resistive memory cells, where the sensing circuit is configured to read a data state of the at least one resistive memory cell by application of a third voltage in the forward bias direction or the bias reverse direction.09-11-2014

Patrick L. Gilbert, Scottsdale, AZ US

Patent application numberDescriptionPublished
20130018985Methods and Apparatus for Remote Data Transfer - Methods and apparatus for communication and data transfer according to various aspects of the present invention include a communication system configured to transfer data to and from a mobile customer device. The communication system may receive customer data for a customer, such as a communication carrier for and a type of remote device. The communication system may include a storage system to store communication information associated with a plurality of wireless carriers and/or device types, such as the wireless carrier and the remote device identified for the user. The communication system may further include a host configured to access the storage system and communicate with the remote device according to the communication information associated with the wireless carrier and/or the remote device.01-17-2013

Paul J. Gilbert, Payson, AZ US

Patent application numberDescriptionPublished
20100241104Insertion system and methods for nasogastric tubes - A nasogastric tube insertion system comprises a nasogastric tube, a guide element, and an inserter element. The inserter element has a slim, elongate main body, a handle attached to the body, and an anatomically curved insertion section. The guide element comprises a swallowable weight attached to a cord, string, monofilament line, tube, or other similar line. The swallowable weight may be ablative in the presence of stomach fluids or may be deflated to allow the guide element to be removed while the nasogastric tube remains in place. The inserter element is inserted through the patient's nasal passages and optionally into the oropharynx. The weight is released and the patient swallows it into the stomach. The guide element is threaded through the guide element retaining structure, and the nasogastric tube is safely inserted along the guide element into the patient's stomach. Chemical property indicators sensitive to fluids found in the stomach may be provided in the nasogastric tube or the guide element to verify correct placement of the nasogastric tube in the stomach.09-23-2010
20110077495Detection indicator - An apparatus comprises a detection indicator and a housing. The detection indicator is configured to change from a first visual indication to a second visual indication upon contact with a fluid based on a characteristic of the fluid. The housing comprises an interior chamber configured to receive the fluid and to provide contact between the fluid and the detection indicator. The housing is configured to removably engage a lumen inserted into a patient to receive the fluid from the patient through the lumen.03-31-2011
20120316415FLUID CHARACTERISTIC MEASUREMENT - An apparatus comprises a detection indicator, a housing, and an exoskeleton in which the housing nests. The detection indicator is configured to furnish a visual indication upon contact with a fluid responsive to a characteristic of the fluid. The housing comprises an interior chamber configured to receive the fluid and to provide contact between the fluid and the detection indicator. The housing is configured to removably engage a conduit coupled to a source of a fluid sample, which may be a lumen inserted into a patient to receive fluid therefrom. In methods for use with the apparatus, a sample is collected, a characteristic is measured by the apparatus, and the apparatus is disconnected so as to avoid leakage of the sample and exposure of personnel.12-13-2012

Patent applications by Paul J. Gilbert, Payson, AZ US

Rose Gilbert, Tempe, AZ US

Patent application numberDescriptionPublished
20140190191MODULAR DATA CENTER - Described are methods, systems, and apparatus, including computer program products, relating to an air module and control thereof. An air module can include a controller, an air intake module configured to receive first air from a first air source and to receive second air from a second air source, an evaporative cooling module in fluid communication with the air intake module, and a mechanical cooling module in fluid communication with the evaporative cooling module. The controller can be configured to cause the intake module to mix the first air and the second air to form intake air, and selectively cool the intake air to form supply air by at least one of causing the evaporative cooling module to selectively cool the intake air, and causing the mechanical cooling module to selectively cool the intake.07-10-2014
20140190198MODULAR DATA CENTER - Described are methods, systems, and apparatus, including computer program products, relating to an air module and control thereof. An air module can include a controller, an air intake module configured to receive first air from a first air source and to receive second air from a second air source, an evaporative cooling module in fluid communication with the air intake module, and a mechanical cooling module in fluid communication with the evaporative cooling module. The controller can be configured to cause the intake module to mix the first air and the second air to form intake air, and selectively cool the intake air to form supply air by at least one of causing the evaporative cooling module to selectively cool the intake air, and causing the mechanical cooling module to selectively cool the intake.07-10-2014

Scott A. Gilbert, Chandler, AZ US

Patent application numberDescriptionPublished
20120161312NON-SOLDER METAL BUMPS TO REDUCE PACKAGE HEIGHT - Electronic assemblies and their manufacture are described. One assembly includes a substrate and a die on a first side of the substrate. A plurality of non-solder metal bumps are positioned on a second side of the substrate. The assembly also includes a board to which the non-solder metal bumps are coupled. The assembly also includes solder positioned between the board and the substrate, wherein the board is electrically coupled to the substrate through the solder and the bumps. Other embodiments are described and claimed.06-28-2012
20140091428LAND SIDE AND DIE SIDE CAVITIES TO REDUCE PACKAGE Z-HEIGHT - A package structure including a capacitor mounted within a cavity in the package substrate is disclosed. The package structure may additionally include a die mounted to a die side surface of the package substrate, and the opposing land side surface of the package substrate may be mounted to a printed circuit board (PCB). The capacitor may be mounted within a cavity formed in the die side surface of the package substrate or the land side surface of the package substrate. Mounting a capacitor within a cavity may reduce the form factor of the package. The die may be mounted within a cavity formed in the die side surface of the package substrate. Solder balls connecting the package to the PCB may be mounted within one or more cavities formed in one or both of the package substrate and the PCB.04-03-2014
20140092572BGA STRUCTURE USING CTF BALLS IN HIGH STRESS REGIONS - A BGA structure having larger solder balls in high stress regions of the array is disclosed. The larger solder balls have higher solder joint reliability (SJR) and as such may be designated critical to function (CTF), whereby the larger solder balls in high stress regions carry input/output signals between a circuit board and a package mounted thereon. The larger solder balls are accommodated by recessing each ball in the package substrate, the circuit board, or both the package substrate and the circuit board. Additionally, a ball attach method for mounting a plurality of solder balls having different average diameters is disclosed.04-03-2014

Stanley R. Gilbert, Thatcher, AZ US

Patent application numberDescriptionPublished
20080217185SYSTEM AND METHOD FOR PRODUCING COPPER POWER BY ELECTROWINNING IN A FLOW-THROUGH ELECTROWINNING CELL - This invention relates to a system and method for producing a metal powder product using conventional electrowinning chemistry (i.e., oxygen evolution at an anode) in a flow-through electrowinning cell. The present invention enables the production of high quality metal powders, including copper powder, from metal-containing solutions using conventional electrowinning processes and/or direct electrowinning.09-11-2008
20080257712APPARATUS FOR PRODUCING METAL POWDER BY ELECTROWINNING - This invention relates to an apparatus for producing a metal powder product using either conventional electrowinning or alternative anode reaction chemistries in a flow-through electrowinning cell. A new design for a flow-through electrowinning cell that employs both flow-through anodes and flow-through cathodes is described. The present invention enables the production of high quality metal powders, including copper powder, from metal-containing solutions using conventional electrowinning processes, direct electrowinning, or alternative anode reaction chemistry.10-23-2008
20090120789SYSTEM AND METHOD FOR PRODUCING METAL POWDER BY ELECTROWINNING - This invention relates to a system and method for producing a metal powder product using either conventional electrowinning or alternative anode reaction chemistries in a flow-through electrowinning cell. The present invention enables the production of high quality metal powders, including copper powder, from metal-containing solutions using conventional electrowinning processes, direct electrowinning, or alternative anode reaction chemistries.05-14-2009
20090145749SYSTEM AND METHOD FOR PRODUCING COPPER POWDER BY ELECTROWINNING USING THE FERROUS/FERRIC ANODE REACTION - The present invention relates, generally, to a method for electrowinning copper powder, and more particularly to a method for electrowinning copper powder from a copper-containing solution using the ferrous/ferric anode reaction. In accordance with various embodiments of the present invention, a process for producing copper powder by electrowinning employs alternative anode reaction technology, namely, the ferrous/ferric anode reaction, and enables the efficient and cost-effective production of copper powder at a total cell voltage of less than about 1.5 V and at current densities of greater than 50 A/ft06-11-2009
20100224484SYSTEM AND METHOD FOR PRODUCING COPPER POWDER BY ELECTROWINNING IN A FLOW-THROUGH ELECTROWINNING CELL - This invention relates to a system and method for producing a metal powder product using conventional electrowinning chemistry (i.e., oxygen evolution at an anode) in a flow-through electrowinning cell. The present invention enables the production of high quality metal powders, including copper powder, from metal-containing solutions using conventional electrowinning processes and/or direct electrowinning.09-09-2010

Patent applications by Stanley R. Gilbert, Thatcher, AZ US

Website © 2015 Advameg, Inc.