Patent application number | Description | Published |
20090023885 | TREATMENT METHOD FOR IMPARTING HIGH IMPACT RESISTANCE IN CERTAIN CBDO COPOLYMERS - According to the invention, an amorphous CBDO copolymer (as described in U.S. Pat. No. 5,705,575, issued Jan. 6, 1998, which U.S. patent is incorporated herein by reference in its entirety) is treated to impart high impact resistance, also called impact strength. | 01-22-2009 |
20090023891 | TREATMENT METHOD FOR IMPARTING SELF-HEALING AND SHAPE MEMORY PROPERTIES TO CERTAIN CBDO COPOLYMERS - According to the invention, an amorphous CBDO polymer (as described in U.S. Pat. No. 5,705,575, issued Jan. 6, 1998, which U.S. patent is incorporated herein by reference in its entirety) is imparted self healing and shape memory properties by heat treatment. | 01-22-2009 |
20090297568 | Intercalated layered silicate - An intercalated layered silicate comprises a layered silicate and an intercalating agent sorbed between the silicate layers of the layered silicate. The amount of intercalating agent is effective to provide an average interlayer spacing between the silicate layers of at least about 20 Å. The intercalating agent comprises one or more of fatty acid esters of sorbitan, ethoxylated fatty esters of sorbitan, fatty acid esters of glycerol, fatty acid esters of polyglycerol, fatty acid amide waxes, variants of amide waxes, and variants of amides. The intercalated layered silicate may be exfoliated by mixing it with a matrix medium and adding sufficient energy to form a dispersed-particle composition. A packaging film, such as a food packaging film, may comprise the dispersed-particle composition. | 12-03-2009 |
20090297675 | Film comprising silicate platelets of exfoliated from phospolipid-intercalated layered silicate - A packaging film comprises a dispersed-particle composition, which comprises a plurality of particles dispersed in a matrix medium of thermoplastic polymer. The particles comprise silicate platelets. Intercalating agent of one or more phospholipids is sorbed to the silicate platelets. | 12-03-2009 |
20100040653 | Intercalated layered silicate - An intercalated layered silicate comprises a layered silicate and an intercalating agent sorbed between the silicate layers of the layered silicate. The amount of intercalating agent is effective to provide an average interlayer spacing between the silicate layers of at least about 20 Å. The intercalating agent has a formula selected from formulas I through VII described herein. The intercalated layered silicate may be exfoliated by mixing it with a matrix medium and adding sufficient energy to form a dispersed-particle composition. A packaging film, such as a food packaging film, may comprise the dispersed-particle composition | 02-18-2010 |
20110201739 | METHOD AND SYSTEM FOR PRODUCING GRAPHENE AND GRAPHENOL - This disclosure includes a process that unexpectedly can produce very inexpensive graphene and a new compound called graphenol in particulate or dispersions in solvents. The process can also produce graphene layers on metallic and nonmetallic substrates. Further, the graphenol and graphene can be utilized to form nanocomposites that yield property improvements exceeding anything reported previously. | 08-18-2011 |
20130112925 | METHOD AND SYSTEM FOR PRODUCING GRAPHENE AND GRAPHENOL - This disclosure includes a process that unexpectedly can produce very inexpensive graphene and a new compound called graphenol in particulate or dispersions in solvents. The process can also produce graphene layers on metallic and nonmetallic substrates. Further, the graphenol and graphene can be utilized to form nanocomposites that yield property improvements exceeding anything reported previously. | 05-09-2013 |
20130140495 | METHOD AND SYSTEM FOR PRODUCING GRAPHENE AND FUNCTIONALIZED GRAPHENE - This disclosure includes a process that unexpectedly can produce very inexpensive graphene, functionalized graphenes, and a new compound called graphenol in particulate or dispersions in solvents. The process can also produce graphene layers on metallic and nonmetallic substrates. Further, the graphenol, functionalized graphenes, and graphene can be utilized to form nanocomposites that yield property improvements exceeding anything reported previously. | 06-06-2013 |
20150030769 | METHOD AND SYSTEM FOR PRODUCING GRAPHENE AND FUNCTIONALIZED GRAPHENE - This disclosure includes a process that unexpectedly can produce very inexpensive graphene, functionalized graphenes, and a new compound called graphenol in particulate or dispersions in solvents. The process can also produce graphene layers on metallic and nonmetallic substrates. Further, the graphenol, functionalized graphenes, and graphene can be utilized to form nanocomposites that yield property improvements exceeding anything reported previously. | 01-29-2015 |