Patent application number | Description | Published |
20140300334 | APPARATUS AND METHODS FOR VOLTAGE CONVERTER BYPASS CIRCUITS - Apparatus and methods for voltage converter bypass circuits are provided. In one embodiment, a voltage conversion system includes a bypass circuit and a voltage converter including an inductor and a plurality of switches configured to control a current through the inductor. The bypass circuit includes a first p-type field effect transistor, a second p-type field effect transistor, a first n-type field effect transistor, and a second n-type field effect transistor. The first and second n-type field effect transistors are electrically in series between a first end and a second end of the inductor. Additionally, the first and second p-type field effect transistor transistors are electrically connected in series between the first end and the second end of the inductor. | 10-09-2014 |
20150180421 | APPARATUS AND METHODS FOR ENVELOPE TRACKERS - Apparatus and methods for envelope trackers are disclosed herein. In certain configurations, a mobile device includes a power amplifier configured to amplify a radio frequency (RF) input signal to generate an RF output signal. The power amplifier is configured to receive power from a power amplifier supply voltage. The mobile device further includes a voltage converter configured to convert a battery voltage into a regulated voltage, and the voltage converter is configured to control a magnitude of the regulated voltage based on an error signal. The mobile device further includes an error amplifier configured to generate an output current based on an envelope of the RF input signal and to generate the power amplifier supply voltage by adjusting the magnitude of the regulated voltage using the output current. The error amplifier is further configured to control the error signal. | 06-25-2015 |
20150293872 | DUAL SERIAL/PARALLEL INTERFACE DEVICES AND SWITCHING COMPONENTS - Systems, methods, and devices for communicating with a serial/parallel interface are described herein. In an aspect, a wireless device includes a transceiver configured to output a plurality of transmission paths, and an antenna configured to output a signal corresponding to at least one of the transmission paths. The wireless device further includes a wireless switching component including a radio-frequency switch configured to selectively connect the antenna to one of the transmission paths, a plurality of signal pins, a serial interface including a plurality of serial inputs electrically coupled to at least one pin of the plurality of signal pins, a parallel interface including a plurality of parallel inputs electrically coupled to at least one pin of the plurality of signal pins, a decoder, and a level shifter configured to control the radio-frequency switch, the at least one pin electrically coupled to both a serial input and a parallel input. | 10-15-2015 |
20150326184 | APPARATUS AND METHODS FOR ENVELOPE TRACKERS - Apparatus and methods for envelope tracking are disclosed. In one embodiment, a power amplifier system including a power amplifier and an envelope tracker is provided. The power amplifier is configured to amplify a radio frequency (RF) signal, and the envelope tracker is configured to control a supply voltage of the power amplifier using an envelope of the RF signal. The envelope tracker includes a buck converter for generating a buck voltage from a battery voltage and a digital-to-analog conversion (DAC) module for adjusting the buck voltage based on the envelope of the RF signal to generate the supply voltage for the power amplifier. | 11-12-2015 |
20150349809 | RADIO FREQUENCY SWITCH CONTROLLER - Implementations of radio frequency switch controllers within the scope of the appended claims are configured to reduce the impact of the clock signal induced spurs. In particular, implementations of switch controllers described herein include a poly-phase clocking scheme, as opposed to a single phase to clock the charge pump stages of an negative voltage generator. In some implementations poly-phase clocking schemes reduce the clock signal induced spurs and may preclude the need for additional on-chip or off-chip decoupling capacitors that add to the cost and physical size of a complete front end module solution. | 12-03-2015 |
20150349837 | WIRELESS DEVICES HAVING REDUCED CLOCK FEED-THROUGH - Implementations of radio frequency switch controllers within the scope of the appended claims are configured to reduce the impact of the clock signal induced spurs. In particular, implementations of switch controllers described herein include a poly-phase clocking scheme, as opposed to a single phase to clock the charge pump stages of an negative voltage generator. In some implementations poly-phase clocking schemes reduce the clock signal induced spurs and may preclude the need for additional on-chip or off-chip decoupling capacitors that add to the cost and physical size of a complete front end module solution. | 12-03-2015 |
20160028351 | TRANSFORMER-BASED DOHERTY POWER AMPLIFIER - Transformer-based Doherty power amplifier (PA). In some embodiments, a Doherty PA can include a carrier amplification path having an output that includes a carrier transformer, and a peaking amplification path having an output that includes a peaking transformer. The Doherty PA can further include a combiner configured to combine the outputs of the carrier and peaking amplification paths into an output node. The combiner can include a quarter-wave circuit implemented between the carrier and peaking transformers. | 01-28-2016 |
20160036389 | ENVELOPE TRACKING WITH LOW FREQUENCY LOSS CORRECTION - A low frequency loss correction circuit that improves the efficiency of a power amplifier at near-DC low frequencies The low frequency loss correction circuit can include a signal error detection circuit configured to produce an error signal in response to detecting one or more frequency components of a tracking signal below a cutoff frequency that are substantially attenuated through a capacitive path. The low frequency loss correction circuit can include a drive circuit configured to convert the error signal into a low frequency correction signal, and provide the low frequency correction signal to a voltage supply line, the low frequency correction signal including at least some of the one or more frequency components of the tracking signal below a cutoff frequency that are substantially attenuated through the capacitive path. | 02-04-2016 |