Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Faden, MD

Alan Faden, Baltimore, MD US

Patent application numberDescriptionPublished
20150037403USE OF miR-23a-3p AND/OR miR-27a-3p MIMICS AS THERAPEUTIC AGENTS FOR INHIBITION OF NEURONAL APOPTOSIS FOLLOWING BRAIN INJURY - The present invention relates to a method for treating a brain injury due to a traumatic event, disease or ischemic attack in a mammal subject, wherein the method comprises administering to the mammal subject an effective amount of miR-23a-3p and/or miR-27a-3p mimics to reduce activation of Puma, Noxa and Bax therby causing a subsequent reduction in neuronal apoptosis.02-05-2015

Alan Ira Faden, Baltimore, MD US

Patent application numberDescriptionPublished
20120204327HELMET DESIGN UTILIZING NANOCOMPOSITES - Disclosed herein is a composite structure for deflecting and spreading kinetic energy transmission after various types of impacts utilizing nanocomposites. The structure has a first composite layer including a discrete reinforcement and a continuous binder. The first composite layer is an outside layer that comes in contact with an object. The structure has at least one subsequent composite layer that is adjacent to the preceding layer and includes a discrete reinforcement and a continuous binder. The discrete reinforcement is made of particles and can have varying sizes and materials. In one embodiment, the particles in layer reinforcements have a progressively smaller size than preceding layers.08-16-2012
20120204329HELMET DESIGNS UTILIZING FLUID-FILLED CONTAINERS - Disclosed herein is a helmet structure for reducing kinetic energy transmission. The helmet has a first layer configured as an outside layer that serves as first contact with a source of kinetic energy and a second layer having a substance that changes state to transfer kinetic energy laterally with respect to the skull. The substance has a threshold shear yield point wherein upon contact with kinetic energy, if the threshold shear yield point of the second layer is met, the layer will at least partially liquefy to yield a liquid and flow to internal or external chambers. In one embodiment, the helmet structure is reset after contact with kinetic energy. The substance in the helmet changes state such that the substance returns to its original state prior to contact with kinetic energy and the substance returns to its original location within the helmet structure.08-16-2012
20120207964HELMET DESIGNS UTILIZING FOAM STRUCTURES HAVING GRADED PROPERTIES - Disclosed herein is a composite structure for deflecting and spreading kinetic energy transmission after various types of impacts utilizing foam structures having graded properties. The structure has a first composite layer, composed of a discrete reinforcement and a continuous binder. The helmet receives contact of an object that transfers kinetic energy to a first composite layer. The helmet uses a second composite layer adjacent to the first composite layer designed such that the second composite layer compresses and expands into an expansion zone in the second composite layer. The second composite layer has expansion structures with a graded modulus such that the material at the tip of an expansion structure has a low modulus and the modulus in the expansion structure increases as it moves from the tip to the base of the expansion structure.08-16-2012
20120208032HELMET DESIGNS UTILIZING AN OUTER SLIP LAYER - Disclosed herein is a helmet structure for reducing kinetic energy transmission. The helmet receives contact of an object that transfers kinetic energy to a first layer having material that displaces in response to applied shearing force. The helmet uses a second layer having material that displaces in response to applied shearing force and uses a third layer having material that does not displace in response to applied shearing force to transfer kinetic energy laterally with respect to the skull. Helmet layers can have material with different mechanical responses, including elastic or rubbery elastic. The outer slip layer may also contain reinforcement particles such as metal, glass and ceramic. In one embodiment, each layer in the structure has a different shear modulus and each layer has a higher shear modulus than the immediately preceding layer. The shear modulus of each layer is modified by adding rigid reinforcement to the layer.08-16-2012
20140109298HELMET DESIGNS UTILIZING AN OUTER SLIP LAYER - Disclosed herein is a helmet structure for reducing kinetic energy transmission. The helmet receives contact of an object that transfers kinetic energy to a first layer having material that displaces in response to applied shearing force. The helmet uses a second layer having material that displaces in response to applied shearing force and uses a third layer having material that does not displace in response to applied shearing force to transfer kinetic energy laterally with respect to the skull. Helmet layers can have material with different mechanical responses, including elastic or rubbery elastic. The outer slip layer may also contain reinforcement particles such as metal, glass and ceramic. In one embodiment, each layer in the structure has a different shear modulus and each layer has a higher shear modulus than the immediately preceding layer. The shear modulus of each layer is modified by adding rigid reinforcement to the layer.04-24-2014
20150125663HELMET DESIGNS UTILIZING FOAM STRUCTURES HAVING GRADED PROPERTIES - Disclosed herein is a composite structure for deflecting and spreading kinetic energy transmission after various types of impacts utilizing foam structures having graded properties. The structure has a first composite layer, composed of a discrete reinforcement and a continuous binder. The helmet receives contact of an object that transfers kinetic energy to a first composite layer. The helmet uses a second composite layer adjacent to the first composite layer designed such that the second composite layer compresses and expands into an expansion zone in the second composite layer. The second composite layer has expansion structures with a graded modulus such that the material at the tip of an expansion structure has a low modulus and the modulus in the expansion structure increases as it moves from the tip to the base of the expansion structure.05-07-2015
20160113348IMPACT AND EXPLOSIVE FORCE MINIMIZATION STRUCTURES - A helmet including an insert provides the ability of including a highly energy absorbing feature within the insert. The insert includes a structure such as a Bingham plastic which, upon impact, absorbs the energy of the impact by converting from a solid to a liquid. Other energy absorbing features are contemplated. The energy absorption process occurs in one aspect in a nonreversible manner such that once a high enough level impact occurs on the insert, it must be replaced within the helmet. The insert has a fastener which enables it to b replaceable. In this manner, a highly absorbing feature of a helmet can be provided to reduce concussions while not requiring the complete replacement of a helmet.04-28-2016

Patent applications by Alan Ira Faden, Baltimore, MD US

Website © 2016 Advameg, Inc.