Patent application number | Description | Published |
20090056800 | Surface Passivation of Silicon Based Wafers - The surface recombination velocity of a silicon sample is reduced by deposition of a thin hydrogenated amorphous silicon or hydrogenated amorphous silicon carbide film, followed by deposition of a thin hydrogenated silicon nitride film. The surface recombination velocity is further decreased by a subsequent anneal. Silicon solar cell structures using this new method for efficient reduction of the surface recombination velocity is claimed. | 03-05-2009 |
20090117713 | Reduction of Attraction Forces Between Silicon Wafers - The present invention is related to a method for reducing attraction forces between wafers ( | 05-07-2009 |
20090266579 | INTERCONNECTOR - The present invention provides a solar module with inter-connectors with improved flexibility. The flexibility is achieved by placing a fabric between the solar elements. The fabric is conductive and may be soldered or welded to the solar elements. | 10-29-2009 |
20090283141 | Solar Cells and Methods for Manufacturing Same - This invention relates to a method for contacting solar wafers containing one or more layers of temperature sensitive passivation layers by first creating local openings in the passivation layer(s) and then fill the openings with an electric conducting material. In this way, it becomes possible to avoid the relatively high temperatures needed in the conventional method for contacting solar wafers containing one or more passivation layer(s), and thus maintain the excellent passivation properties of newly developed temperature sensitive passivation layer(s) during and after the contacting. | 11-19-2009 |
20090314338 | COATING FOR THIN-FILM SOLAR CELLS - This invention relates to a method for producing thin film solar cells with a back-side reflective layer, wherein the solar module is a silicon thin film device placed in-between a back side planar substrate and a front side planar glass superstrate placed in parallel and a distance from the back side planar substrate, wherein the silicon thin film device comprises in successive order from the front side: a front side transparent conductive (TCO) layer, a multi junction thin-film solar conversion layer comprising amorphous and microcrystalline silicon or alloys thereof, a back side TCO-layer, a diffuse reflective layer with one or more local through-going apertures, and a metal layer covering the reflective layer and which is in contact with the back side TCO-layer through the one or more apertures in the reflective layer. The invention also relates to a method for forming the solar cell. | 12-24-2009 |
20100032011 | BACK CONTACTED SOLAR CELL - This invention relates to a cost effective method of producing a back contacted silicon solar cell and the cell made by the method, where the method comprises applying a silicon substrate, wafer or thin film, doped on the back side with alternating P-type and N-type conductivity in an interdigitated pattern and optionally a layer of either P- or N-type on the front side of the wafer, depositing one or more surface passivation layers on both sides of the substrate, creating openings in the surface passivation layers on the back side of the substrate, depositing a metallic layer covering the entire back side and which fills the openings in the surface passivation layers, and creating openings in the deposited metallic layer such that electric insulated contacts with the doped regions on the back side of the substrate is obtained. | 02-11-2010 |
20100108123 | INTERCONNECTING REFLECTOR RIBBON FOR SOLAR CELL MODULES - A solar cell module comprises a light receiving structure with a substantially transparent front cover and a plurality of active elements placed behind the said front cover. At least one interconnector is situated between adjacent active elements, the interconnectors having a reflective structure facing towards said front cover. | 05-06-2010 |
20100307926 | METHOD AND DEVICE FOR SUPPLYING ELECTRICAL POWER - Method and device for supplying electrical power to a wafer that is at least partially submerged in a liquid. The device comprises: —a container filled with the liquid; —a transportation device comprising a wafer carrier device for transporting the wafer at least partially submerged through the liquid; —a power supply device for supplying electrical power to the wafer. | 12-09-2010 |
20100319767 | METHOD FOR PROVIDING A CONTACT ON THE BACK SURFACE OF A SOLAR CELL, AND A SOLAR CELL WITH CONTACTS PROVIDED ACCORDING TO THE METHOD - The present invention relates to a solar cell which includes a silicon layer ( | 12-23-2010 |
20110005569 | PARALLEL INTERCONNECTION OF SOLAR CELL UNITS - Method for manufacturing an solar cell device, characterized in that the method comprises among others the following steps: arranging solar cell units ( | 01-13-2011 |
20110120531 | METHOD FOR PRODUCTION OF WAFER BASED SOLAR PANELS - This invention relates to a method for producing solar cells, and photovoltaic panels thereof. The method for producing solar panels comprises employing a number of semiconductor wafers and/or semiconductor sheets of films prefabricated to prepare them for back side metallization, which are placed and attached adjacent to each other and with their front side facing downwards onto the back side of the front glass, before subsequent processing that includes depositing at least one metal layer covering the entire front glass including the back side of the attached wafers/sheets of films. The metallic layer is then patterned/divided into electrically isolated contacts for each solar cell and into interconnections between adjacent solar cells. | 05-26-2011 |
20120024368 | BACK CONTACTING AND INTERCONNECTION OF TWO SOLAR CELLS - Method for producing back contacts on silicon solar cells and an interconnection between silicon solar cells where the front surface has been fully treated and the back surface has been processed to the point where the said solar cells can be contacted on the back surface. The method further includes: a) attaching the solar cells onto a transparent superstrate, thereby forming a structure, b) depositing a passivating layer onto the back surface of the structure, c) depositing a silicon material layer onto the back surface of the structure, d) separating the silicon material layer by first areas, e) providing contact sites in areas, f) depositing a metal layer onto the back surface of the structure, g) heating the structure to form silicide, h) optionally opening the metal layer in areas, and i) depositing metal onto the silicide. Device includes solar cells with back contacts and interconnections produced by the method. | 02-02-2012 |
20120085403 | METHOD FOR PRODUCING A CONTACT, A CONTACT AND SOLAR CELL COMPRISING A CONTACT - Method for providing at least one contact on a back surface of a solar cell comprising a silicon substrate comprising depositing a passivating layer onto the silicon substrate and thereafter providing at least one contact site and further providing a patterned exposed silicon surface. Then depositing a metal layer and annealing the structure to form metal silicide. Thereafter the process involves optionally removing excess metal and finally applying metal onto the silicide to form at least one contact. A solar cell comprising a back surface, the back surface comprising a contact, produced by the above mentioned method. A contact for back surface of a solar cell comprising a silicon substrate, an amorphous silicon layer deposited onto the silicon substrate, a reflective layer with at least one opening deposited onto the amorphous silicon layer, in the at least one opening there resides silicide, with additional metal covering the silicide. | 04-12-2012 |
20130228160 | METHOD FOR PRODUCTION OF PHOTOVOLTAIC WAFERS AND ABRASIVE SLURRY - The present invention relates to a method for production of photovoltaic wafers and abrasive slurries for multi-wire sawing of wafers for photovoltaic applications, and more specific to abrasive slurries which are easy to remove from the wafers after sawing, where the abrasive slurry comprises one part recycled abrasive slurry, an alkali in sufficient amount to provide a pH in the abrasive slurry mixture in the range from 6.0 to 9.0, and one part novel abrasive slurry in an amount sufficient to provide an ion content in the abrasive slurry mixture to provide an electric conductivity of less than 50 μS/cm. | 09-05-2013 |
20140096819 | SOLAR CELL AND METHOD FOR PRODUCING SAME - A rear contact heterojunction solar cell and a fabricating method. The solar cell comprises a silicon substrate having a passivating layer and an intrinsic amorphous silicon layer. At a back side of the intrinsic amorphous silicon layer, an emitter layer and a base layer are provided. Interposed between these emitter and base layers is a separation layer comprising an electrically insulating material. This separation layer as well as the base layer and emitter layer may be generated by vapour deposition. Due to such processing, adjacent regions of the emitter layer and the separating layer and adjacent regions of the base layer and the separating layer partially laterally overlap in overlapping areas in such a way that at least a part of the separating layer is located closer to the substrate than an overlapping portion of the respective one of the emitter layer and the base layer. | 04-10-2014 |
20140238463 | METHOD FOR PRODUCTION OF WAFER BASED SOLAR PANELS - This invention relates to a method for producing solar cells, and photovoltaic panels thereof. The method for producing solar panels comprises employing a number of semiconductor wafers and/or semiconductor sheets of films prefabricated to prepare them for back side metallization, which are placed and attached adjacent to each other and with their front side facing downwards onto the back side of the front glass, before subsequent processing that includes depositing at least one metal layer covering the entire front glass including the back side of the attached wafers/sheets of films. The metallic layer is then patterned/divided into electrically isolated contacts for each solar cell and into interconnections between adjacent solar cells. | 08-28-2014 |
20150068597 | SURFACE PASSIVATION OF SILICON BASED WAFERS - The surface recombination velocity of a silicon sample is reduced by deposition of a thin hydrogenated amorphous silicon or hydrogenated amorphous silicon carbide film, followed by deposition of a thin hydrogenated silicon nitride film. The surface recombination velocity is further decreased by a subsequent anneal. Silicon solar cell structures using this new method for efficient reduction of the surface recombination velocity is claimed. | 03-12-2015 |