Patent application number | Description | Published |
20080293259 | METHOD OF FORMING METAL/HIGH-k GATE STACKS WITH HIGH MOBILITY - The present invention provides a gate stack structure that has high mobilities and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×10 | 11-27-2008 |
20080308872 | CMOS TRANSISTORS WITH DIFFERENTIAL OXYGEN CONTENT HIGH-K DIELECTRICS - An NFET containing a first high-k dielectric portion and a PFET containing a second high-k gate dielectric portion are formed on a semiconductor substrate. A gate sidewall nitride is formed on the gate of the NFET, while the sidewalls of the PFET remain free of the gate sidewall nitride. An oxide spacer is formed directly on the sidewalls of a PFET gate stack and on the gate sidewall nitride on the NFET. After high temperature processing, the first and second dielectric portions contain a non-stoichiometric oxygen deficient high-k dielectric material. The semiconductor structure is subjected to an anneal in an oxygen environment, during which oxygen diffuses through the oxide spacer into the second high-k dielectric portion. The PFET comprises a more stoichiometric high-k dielectric material and the NFET comprises a less stoichiometric high-k dielectric material. Threshold voltages of the PFET and the NFET are optimized by the present invention. | 12-18-2008 |
20090011610 | SELECTIVE IMPLEMENTATION OF BARRIER LAYERS TO ACHIEVE TRESHOLD VOLTAGE CONTROL IN CMOS DEVICE FABRICATION WITH HIGH K DIELECTRICS - A method of forming a CMOS structure, and the device produced therefrom, having improved threshold voltage and flatband voltage stability. The inventive method includes the steps of providing a semiconductor substrate having an nFET region and a pFET region; forming a dielectric stack atop the semiconductor substrate comprising an insulating interlayer atop a high k dielectric; removing the insulating interlayer from the nFET region without removing the insulating interlayer from the pFET region; and providing at least one gate stack in the pFET region and at least one gate stack in the nFET region. The insulating interlayer can be AlN or AlO | 01-08-2009 |
20090039426 | EXTREMELY-THIN SILICON-ON-INSULATOR TRANSISTOR WITH RAISED SOURCE/DRAIN - An extremely-thin silicon-on-insulator transistor is provided that includes a buried oxide layer above a substrate, a silicon layer above the buried oxide layer, a gate stack on the silicon layer, a nitride liner on the silicon layer and adjacent to the gate stack, an oxide liner on and adjacent to the nitride liner, and raised source/drain regions. The gate stack includes a high-k oxide layer on the silicon layer and a metal gate on the high-k oxide layer. Each of the raised source/drain regions has a first part comprising a portion of the silicon layer, a second part adjacent to parts of the oxide liner and the nitride liner, and a third part above the second part. Also provided is a method for fabricating an extremely-thin silicon-on-insulator transistor. | 02-12-2009 |
20090065817 | DIELECTRIC SPACER REMOVAL - The present invention relates to semiconductor devices, and more particularly to a process and structure for removing a dielectric spacer selective to a surface of a semiconductor substrate with substantially no removal of the semiconductor substrate. The method of the present invention can be integrated into a conventional CMOS processing scheme or into a conventional BiCMOS processing scheme. The method includes forming a field effect transistor on a semiconductor substrate, the FET comprising a dielectric spacer and the gate structure, the dielectric spacer located adjacent a sidewall of the gate structure and over a source/drain region in the semiconductor substrate; depositing a first nitride layer over the FET; and removing the nitride layer and the dielectric spacer selective to the semiconductor substrate with substantially no removal of the semiconductor substrate. | 03-12-2009 |
20090152642 | SELECTIVE IMPLEMENTATION OF BARRIER LAYERS TO ACHIEVE THRESHOLD VOLTAGE CONTROL IN CMOS DEVICE FABRICATION WITH HIGH-k DIELECTRICS - The present invention provides a semiconductor structure including a semiconductor substrate having a plurality of source and drain diffusion regions located therein, each pair of source and drain diffusion regions are separated by a device channel. The structure further includes a first gate stack of pFET device located on top of some of the device channels, the first gate stack including a high-k gate dielectric, an insulating interlayer abutting the gate dielectric and a fully silicided metal gate electrode abutting the insulating interlayer, the insulating interlayer includes an insulating metal nitride that stabilizes threshold voltage and flatband voltage of the p-FET device to a targeted value and is one of aluminum oxynitride, boron nitride, boron oxynitride, gallium nitride, gallium oxynitride, indium nitride and indium oxynitride. A second gate stack of an nFET devices is located on top remaining device channels, the second gate stack including a high-k gate dielectric and a fully silicided gate electrode located directly atop the high-k gate dielectric. | 06-18-2009 |
20090236691 | DEEP TRENCH (DT) METAL-INSULATOR-METAL (MIM) CAPACITOR - A deep trench metal-insulator-metal (MIM) capacitor in an SOI-type substrate. In the deep trench, a layer of TiN, followed by a layer of high-k dielectric, followed by a second layer of TiN. The resulting capacitor is completely buried below the SOI layer, thereby allowing for subsequent structures to be placed over the deep trench. | 09-24-2009 |
20090302399 | Using Metal/Metal Nitride Bilayers as Gate Electrodes in Self-Aligned Aggressively Scaled CMOS Devices - The present invention is directed to CMOS structures that include at least one nMOS device located on one region of a semiconductor substrate; and at least one pMOS device located on another region of the semiconductor substrate. In accordance with the present invention, the at least one nMOS device includes a gate stack comprising a gate dielectric, a low workfunction elemental metal having a workfunction of less than 4.2 eV, an in-situ metallic capping layer, and a polysilicon encapsulation layer and the at least one pMOS includes a gate stack comprising a gate dielectric, a high workfunction elemental metal having a workfunction of greater than 4.9 eV, a metallic capping layer, and a polysilicon encapsulation layer. The present invention also provides methods of fabricating such a CMOS structure. | 12-10-2009 |
20090311836 | EXTREMELY-THIN SILICON-ON-INSULATOR TRANSISTOR WITH RAISED SOURCE/DRAIN - An extremely-thin silicon-on-insulator transistor is provided that includes a buried oxide layer above a substrate, a silicon layer above the buried oxide layer, a gate stack on the silicon layer, a nitride liner on the silicon layer and adjacent to the gate stack, an oxide liner on and adjacent to the nitride liner, and raised source/drain regions. The gate stack includes a high-k oxide layer on the silicon layer and a metal gate on the high-k oxide layer. Each of the raised source/drain regions has a first part comprising a portion of the silicon layer, a second part adjacent to parts of the oxide liner and the nitride liner, and a third part above the second part. Also provided is a method for fabricating an extremely-thin silicon-on-insulator transistor. | 12-17-2009 |
20100148273 | CMOS TRANSISTORS WITH DIFFERENTIAL OXYGEN CONTENT HIGH-K DIELECTRICS - An NFET containing a first high-k dielectric portion and a PFET containing a second high-k gate dielectric portion are formed on a semiconductor substrate. A gate sidewall nitride is formed on the gate of the NFET, while the sidewalls of the PFET remain free of the gate sidewall nitride. An oxide spacer is formed directly on the sidewalls of a PFET gate stack and on the gate sidewall nitride on the NFET. After high temperature processing, the first and second dielectric portions contain a non-stoichiometric oxygen deficient high-k dielectric material. The semiconductor structure is subjected to an anneal in an oxygen environment, during which oxygen diffuses through the oxide spacer into the second high-k dielectric portion. The PFET comprises a more stoichiometric high-k dielectric material and the NFET comprises a less stoichiometric high-k dielectric material. Threshold voltages of the PFET and the NFET are optimized by the present invention. | 06-17-2010 |
20110165767 | SELECTIVE IMPLEMENTATION OF BARRIER LAYERS TO ACHIEVE THRESHOLD VOLTAGE CONTROL IN CMOS DEVICE FABRICATION WITH HIGH-k DIELECTRICS - The present invention provides a semiconductor structure including a semiconductor substrate having a plurality of source and drain diffusion regions located therein, each pair of source and drain diffusion regions are separated by a device channel. The structure further includes a first gate stack of pFET device located on top of some of the device channels, the first gate stack including a high-k gate dielectric, an insulating interlayer abutting the gate dielectric and a fully silicided metal gate electrode abutting the insulating interlayer, the insulating interlayer includes an insulating metal nitride that stabilizes threshold voltage and flatband voltage of the p-FET device to a targeted value and is one of aluminum oxynitride, boron nitride, boron oxynitride, gallium nitride, gallium oxynitride, indium nitride and indium oxynitride. A second gate stack of an nFET devices is located on top remaining device channels, the second gate stack including a high-k gate dielectric and a fully silicided gate electrode located directly atop the high-k gate dielectric. | 07-07-2011 |
20120043622 | PROGRAMMABLE FETs USING Vt-SHIFT EFFECT AND METHODS OF MANUFACTURE - Programmable field effect transistors (FETs) are provided using high-k dielectric metal gate Vt shift effect and methods of manufacturing the same. The method of controlling Vt shift in a high-k dielectric metal gate structure includes applying a current to a gate contact of the high-k dielectric metal gate structure to raise a temperature of a metal forming a gate stack. The temperature is raised beyond a Vt shift temperature threshold for providing an on-state. | 02-23-2012 |
20120248537 | FABRICATION OF DEVICES HAVING DIFFERENT INTERFACIAL OXIDE THICKNESS VIA LATERAL OXIDATION - A method for forming a semiconductor device includes forming a first field effect transistor (FET) and a second FET on a substrate, the first FET comprising a first interfacial oxide layer, and the second FET comprising a second interfacial oxide layer; encapsulating the first interfacial oxide layer of the first FET; and performing lateral oxidation of the second interfacial oxide layer of the second FET, wherein the lateral oxidation of the second interfacial oxide layer of the second FET converts a portion of the substrate located underneath the second FET into additional interfacial oxide. | 10-04-2012 |
20120306019 | FABRICATION OF DEVICES HAVING DIFFERENT INTERFACIAL OXIDE THICKNESS VIA LATERAL OXIDATION - A semiconductor device includes a first field effect transistor (FET) and a second FET located on a substrate, the first FET comprising a first interfacial oxide layer, and the second FET comprising a second interfacial oxide layer, wherein the second interfacial oxide layer of the second FET is thicker than the first interfacial oxide layer of the first FET; and a recess located in the substrate adjacent to the second FET. | 12-06-2012 |
20130099313 | FINFET STRUCTURE AND METHOD TO ADJUST THRESHOLD VOLTAGE IN A FINFET STRUCTURE - FinFET structures and methods of manufacturing the FinFET structures are disclosed. The method includes performing an oxygen anneal process on a gate stack of a FinFET structure to induce Vt shift. The oxygen anneal process is performed after sidewall pull down and post silicide. | 04-25-2013 |
20130175630 | REPLACEMENT GATE STRUCTURE FOR TRANSISTOR WITH A HIGH-K GATE STACK - A transistor includes a semiconductor layer and a gate structure located on the semiconductor layer. The gate structure includes a first dielectric layer. The first dielectric layer includes a doped region and an undoped region below the doped region. A second dielectric layer is located on the first dielectric layer, and a first metal nitride layer is located on the second dielectric layer. The doped region of the first dielectric layer comprises dopants from the second dielectric layer. Source and drain regions in the semiconductor layer are located on opposite sides of the gate structure. | 07-11-2013 |
20130187244 | PROGRAMMABLE FETs USING Vt-SHIFT EFFECT AND METHODS OF MANUFACTURE - Programmable field effect transistors (FETs) are provided using high-k dielectric metal gate Vt shift effect and methods of manufacturing the same. The method of controlling Vt shift in a high-k dielectric metal gate structure includes applying a current to a gate contact of the high-k dielectric metal gate structure to raise a temperature of a metal forming a gate stack. The temperature is raised beyond a Vt shift temperature threshold for providing an on-state. | 07-25-2013 |
20140120707 | Method to Improve Reliability of High-k Metal Gate Stacks - A method of fabricating a gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over an area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; annealing the replacement gate structure in an ambient atmosphere containing hydrogen; and depositing a gap fill layer. | 05-01-2014 |
20140141598 | METHOD TO IMPROVE RELIABILITY OF REPLACEMENT GATE DEVICE - A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; annealing the structure at a high temperature of not less than 800° C.; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill. Optionally, a second annealing step can be performed after the first anneal. This second anneal is performed as a millisecond anneal using a flash lamp or a laser. | 05-22-2014 |
20140195175 | MEASURING DIELECTRIC BREAKDOWN IN A DYNAMIC MODE - Embodiments of the present invention provide a method, system, and program product for testing a semiconductor device to measure dielectric breakdown. A computer applies a plurality of stress voltages to a semiconductor device under test. The computer determines a plurality of current measurements until a failure criteria occurs, using a predefined voltage ramp rate and a predefined plurality of stress voltage steps, wherein the number of the plurality of current measurements is less than or equal to the number of the predefined plurality of voltage steps. The computer identifies a stress voltage at which the semiconductor device fails. The computer calculates a frequency dependent voltage acceleration factor based on the quotient of the natural log of the voltage at which the semiconductor device under test failed to the natural log of the predetermined voltage ramp rate. | 07-10-2014 |
20140217504 | FINFET STRUCTURE AND METHOD TO ADJUST THRESHOLD VOLTAGE IN A FINFET STRUCTURE - FinFET structures and methods of manufacturing the FinFET structures are disclosed. The method includes performing an oxygen anneal process on a gate stack of a FinFET structure to induce Vt shift. The oxygen anneal process is performed after sidewall pull down and post silicide. | 08-07-2014 |
20150035073 | ENABLING ENHANCED RELIABILITY AND MOBILITY FOR REPLACEMENT GATE PLANAR AND FINFET STRUCTURES - A method for semiconductor fabrication includes forming at least one of a diffusion barrier layer and a metal containing layer over a dielectric layer in a gate cavity. A first anneal is performed to diffuse elements from the at least one of the diffusion barrier layer and the metal containing layer into the dielectric layer. The metal containing layer and the diffusion barrier layer are removed. A second anneal is performed to adjust diffusion of the elements in the dielectric layer to provide a gate dielectric region. | 02-05-2015 |
20150054093 | FINFET STRUCTURE AND METHOD TO ADJUST THRESHOLD VOLTAGE IN A FINFET STRUCTURE - FinFET structures and methods of manufacturing the FinFET structures are disclosed. The method includes performing an oxygen anneal process on a gate stack of a FinFET structure to induce Vt shift. The oxygen anneal process is performed after sidewall pull down and post silicide. | 02-26-2015 |