Patent application number | Description | Published |
20120107997 | METHOD OF MANUFACTURING SOLAR CELL - In a method of manufacturing a solar cell, a first dopant layer is formed on a lower surface of a substrate and a diffusion-preventing layer is formed on an upper surface of the substrate. Then, the first dopant layer is patterned to expose portions of the lower surface of the substrate, and a second dopant layer is formed on the exposed portion of the lower surface of the substrate. A third dopant layer is formed on the diffusion-preventing layer, and the substrate is heated to diffuse dopants from the first, second, and third dopant layers into the substrate, thereby forming semiconductor areas in the substrate. | 05-03-2012 |
20120220071 | SCREEN MASK AND MANUFACTURING METHOD OF A SOLAR CELL USING THE SCREEN MASK - A screen mask has a mesh, a frame, and at least one emulsion pattern. The mesh includes a squeeze surface pressed by a squeegee, and a discharge surface discharging a paste. The frame fixes an edge of the mesh. The emulsion pattern is placed on the discharge surface and includes a main pattern, and an auxiliary pattern spaced apart from the main pattern. | 08-30-2012 |
20130087192 | PHOTOVOLTAIC DEVICE - A photovoltaic device, and a method of fabricating the same are provided. Here, a base portion and an emitter portion are formed on a surface of a semiconductor substrate. An insulation layer is formed on the base portion and the emitter portion. The insulation layer has a plurality of vias to partially expose the base portion and the emitter portion. A first electrode is formed to contact a region of the emitter portion through at least one of the vias, and a second electrode is formed to contact a region of the base portion through at least another one of the vias. Then, a dicing line is set at a bus electrode portion of the second electrode, and the semiconductor substrate is split into at least two photovoltaic devices at the base portion along the dicing line. | 04-11-2013 |
20130104974 | SOLAR CELL AND MANUFACTURING METHOD THEREOF | 05-02-2013 |
20130112253 | SOLAR CELL - A solar cell including a first conductive type semiconductor substrate; a first intrinsic semiconductor layer on a front surface of the semiconductor substrate; a first conductive type first semiconductor layer on at least one surface of the first intrinsic semiconductor layer; a second conductive type second semiconductor layer on a back surface of the semiconductor substrate; a second intrinsic semiconductor layer between the second semiconductor layer and the semiconductor substrate; a first conductive type third semiconductor layer on the back surface of the semiconductor substrate, the third semiconductor layer being spaced apart from the second semiconductor layer; and a third intrinsic semiconductor layer between the third semiconductor layer and the semiconductor substrate. | 05-09-2013 |
20130125964 | SOLAR CELL AND MANUFACTURING METHOD THEREOF - A solar cell including a crystalline semiconductor substrate having a first conductive type; a first doping layer on a front surface of the substrate and being doped with a first conductive type impurity; a front surface antireflection film on the front surface of the substrate; a back surface antireflection film on a back surface of the substrate; an intrinsic semiconductor layer, an emitter, and a first auxiliary electrode stacked on the back surface antireflection film and the substrate; a second doping layer on the back surface of the substrate and being doped with the first impurity; an insulating film on the substrate and including an opening overlying the second doping layer; a second auxiliary electrode in the opening and overlying the second doping layer; a first electrode on the first auxiliary electrode; and a second electrode on the second auxiliary electrode and being separated from the first electrode. | 05-23-2013 |
20130133729 | SOLAR CELL AND MANUFACTURING METHOD THEREOF - A solar cell includes a semiconductor substrate, a first intrinsic semiconductor layer and a second intrinsic semiconductor layer on the semiconductor substrate, the first intrinsic semiconductor layer and the second intrinsic semiconductor layer being spaced apart from each other, a first conductive semiconductor layer and a second conductive semiconductor layer respectively disposed on the first intrinsic semiconductor layer and the second intrinsic semiconductor layer, and a first electrode and a second electrode, each including a bottom layer on the first conductive semiconductor layer and the second conductive semiconductor layer, respectively, the bottom layer including a transparent conductive oxide, and an intermediate layer on the bottom layer, the intermediate layer being including copper. | 05-30-2013 |
20130228218 | THIN FILM TYPE SOLAR CELL AND FABRICATION METHOD THEREOF - A method of fabricating a solar cell includes forming a doped portion having a first conductive type on a semiconductor substrate, growing an oxide layer on the semiconductor substrate, forming a plurality of recess portions in the oxide layer, further growing the oxide layer on the semiconductor substrate, forming a doped portion having a second conductive type on areas of the semiconductor substrate corresponding to the recess portions, forming a first conductive electrode electrically coupled to the doped portion having the first conductive type, and forming a second conductive electrode on the semiconductor substrate and electrically coupled to the doped portion having the second conductive type, wherein a gap between the doped portions having the first and second conductive types corresponds to a width of the oxide layer formed by further growing the oxide layer. | 09-05-2013 |
20130267059 | METHOD OF MANUFACTURING PHOTOELECTRIC DEVICE - A method of manufacturing a photoelectric device, the method including: forming a first semiconductor layer on a semiconductor substrate through a first ion implantation; forming a second semiconductor layer having an inverted conductive type on a part of the first semiconductor layer through a second ion implantation; and performing thermal processing to restore lattice damage of the semiconductor substrate and activate a dopant into which ion implanted. | 10-10-2013 |
20140130854 | PHOTOELECTRIC DEVICE AND THE MANUFACTURING METHOD THEREOF - A photoelectric device includes: a semiconductor substrate including monocrystalline silicon and has first and second surfaces that are opposite to each other; a doping unit formed on the first surface of the semiconductor substrate; and an insulating layer that is formed between the doping unit and the second surface of the semiconductor substrate, wherein the doping unit includes: a first semiconductor layer including a first dopant doped in the monocrystalline silicon; and a second semiconductor layer including a second dopant doped in the monocrystalline silicon. | 05-15-2014 |