Patent application number | Description | Published |
20130178662 | Modified Catalyst Supports - The present invention relates to modified catalyst supports, to processes for making modified catalyst supports, and to chemical processes employing catalysts that comprise such modified catalyst supports. The modified catalyst support comprises a first metal, a second metal and a support modifier on a support, wherein the support modifier comprises a support modifier metal selected from the group consisting of tungsten, molybdenum, vanadium, niobium, and tantalum. | 07-11-2013 |
20130178663 | COBALT-CONTAINING HYDROGENATION CATALYSTS AND PROCESSES FOR MAKING SAME - The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises cobalt, precious metal and one or more active metals on a modified support. | 07-11-2013 |
20130178664 | Hydrogenation Catalysts - The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support may comprise cobalt tungstate. | 07-11-2013 |
20130211150 | Chemisorption of Ethyl Acetate During Hydrogenation of Acetic Acid to Ethanol - A hydrogenation catalyst and process using the catalyst for converting a mixture comprising acetic acid and ethyl acetate to ethanol at a first temperature, and the catalyst desorbs ethyl acetate, in the absence of hydrogen, at a second temperature that is greater than the first temperature. The catalyst has a suitable chemisorption of ethyl acetate at the first temperature in the absence of hydrogen. In one embodiment, the first temperature ranges from 125° C. to 350° C. and the second temperature ranges from 300° C. to 600° C. The catalyst comprises one or more active metals or oxide thereof on a support that comprises tungsten or an oxide thereof. The one or more active metals are selected from the group consisting of cobalt, copper, gold, iron, nickel, palladium, platinum, iridium, osmium, rhenium, rhodium, ruthenium, tin, zinc, lanthanum, cerium, manganese, chromium, vanadium, and molybdenum. | 08-15-2013 |
20130245333 | Ethanol Manufacturing Process Over Catalyst Having Improved Radial Crush Strength - Acetic acid is hydrogenation in the presence of a catalyst comprising one or more active metals on a silica support, wherein the catalyst has a radial crush strength of at least 4 N/mm. The one or more active metals may include cobalt, copper, gold, iron, nickel, palladium, platinum, iridium, osmium, rhenium, rhodium, ruthenium, tin, zinc, lanthanum, cerium, manganese, chromium, vanadium, molybdenum and mixtures thereof. Radial crush strength may be improved by steam treating the catalyst support prior to the loading of the one or more active metals. | 09-19-2013 |
20150024927 | CHEMISORPTION OF ETHYL ACETATE DURING HYDROGENATION OF ACETIC ACID TO ETHANOL - A hydrogenation catalyst and process using the catalyst for converting a mixture comprising acetic acid and ethyl acetate to ethanol at a first temperature, and the catalyst desorbs ethyl acetate, in the absence of hydrogen, at a second temperature that is greater than the first temperature. The catalyst has a suitable chemisorption of ethyl acetate at the first temperature in the absence of hydrogen. In one embodiment, the first temperature ranges from 125° C. to 350° C. and the second temperature ranges from 300° C. to 600° C. The catalyst comprises one or more active metals or oxide thereof on a support that comprises tungsten or an oxide thereof. The one or more active metals are selected from the group consisting of cobalt, copper, gold, iron, nickel, palladium, platinum, iridium, osmium, rhenium, rhodium, ruthenium, tin, zinc, lanthanum, cerium, manganese, chromium, vanadium, and molybdenum. | 01-22-2015 |
20150024928 | Ethanol Manufacturing Process Over Catalyst Having Improved Radial Crush Strength - Acetic acid is hydrogenation in the presence of a catalyst comprising one or more active metals on a silica support, wherein the catalyst has a radial crush strength of at least 4 N/mm. The one or more active metals may include cobalt, copper, gold, iron, nickel, palladium, platinum, iridium, osmium, rhenium, rhodium, ruthenium, tin, zinc, lanthanum, cerium, manganese, chromium, vanadium, molybdenum and mixtures thereof. Radial crush strength may be improved by steam treating the catalyst support prior to the loading of the one or more active metals. | 01-22-2015 |
20150025281 | Process for Producing Ethanol Using Hydrogenation Catalysts - The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support may comprise cobalt tungstate. | 01-22-2015 |