Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Denis Babin, Georgetown CA

Denis Babin, Georgetown CA

Patent application numberDescriptionPublished
20080279978Manifold Nozzle Connection For An Injection Molding System - An injection molding system having a manifold nozzle connection that accommodates thermal expansion of the system. A manifold nozzle tubular connector is receivable at a first end within a manifold and at a second end within a nozzle and has a length that bridges a space between opposing surfaces of the manifold and nozzle. The first end of the tubular connector may be threadably and/or permanently attached within a manifold bore in a downstream surface of the manifold with the second end of the tubular connector being slidably received within a nozzle bore in an upstream surface of the nozzle or within a nozzle melt channel. Alternatively, the first end of the tubular connector may be slidably received within a manifold bore in the downstream surface of the manifold or within a manifold melt channel with the second end of the tubular connector being threadably and/or permanently attached within a nozzle bore in an upstream surface of the nozzle.11-13-2008
20080279979Injection Molding Nozzle With Valve Pin Alignment - An injection molding apparatus is disclosed that includes a valve-gated nozzle having a nozzle tip assembly and a valve pin slidably disposed therein. The nozzle tip assembly includes a nozzle liner having a first valve pin guiding portion, a valve pin guide having a second valve pin guiding portion upstream of the first valve pin guiding portion, and a transfer seal having a bore for receiving the nozzle liner and the valve pin guide therein. The transfer seal bore includes an alignment surface that surrounds the nozzle liner and the valve pin guide to align the first and second valve pin guiding portions with the mold gate, such that the valve pin is accurately aligned during operation. The transfer seal also includes means to couple the nozzle tip assembly to the nozzle body.11-13-2008
20090051080Individual Cavity Shut-Off Valve For An Injection Molding Apparatus - An injection molding apparatus includes a first nozzle having a first nozzle melt channel in fluid communication with a manifold melt channel, and a second nozzle having a second nozzle melt channel in fluid communication with the first nozzle melt channel. A nozzle link is provided between the first nozzle and the second nozzle and includes a nozzle link melt passage for fluidly coupling the first nozzle melt channel and the second nozzle melt channel. The second nozzle includes a plurality of outwardly extending melt passages in fluid communication with the second nozzle melt channel. The outwardly extending melt passages deliver melt to a plurality of mold cavities through a plurality of respective gate seals and mold gates. At least one shut-off valve is disposed within the second nozzle. The shut-off valve is associated with an outwardly extending melt passage and switchable between an open position and a closed position.02-26-2009
20090098233Injection Molding Actuator Position Sensing - A nozzle has a valve pin for controlling flow of molding material through a nozzle melt passage. An actuator has a stationary part and a movable part. The actuator further has an extending rod connected to the movable part thereof and a block connected to the rod, the block being movable with the moveable part of the actuator. A pivoting linkage element is rotatably connected to the block of the actuator and is connected to the valve pin of the nozzle. The pivoting linkage element moves the valve pin in response to movement of the movable part of the actuator. A bracket is connected to the stationary part of the actuator. Two sensors are connected to the bracket for detecting different positions of the block. The sensors may be air proximity sensors.04-16-2009
20090142440Multi-Piece Valve Pin Bushing - A bushing body has an upstream portion and a downstream portion for extending into a channel. The bushing body has a bore therethrough for receiving a valve pin. A contoured sleeve is fit around the downstream portion of the bushing body for guiding a flow of molding material. A cap piece is coupled to the upstream portion of the bushing body for contacting a back plate.06-04-2009
20090157526Method for Fast Manufacturing and Assembling of Hot Runner Systems - The method and apparatus of the present invention includes a computer implemented injection molding configuring subsystem which enables a customer to interactively specify and design a system using a mix of parameters that the customer specifies and are manufacturing process determined. The configuring subsystem is connected to a computer network such as the Internet. The method and apparatus of the present invention further includes a computerized business and processing subsystem in communication with the configuring subsystem. The computerized business subsystem automatically provides a cost and schedule for a system configured by the configuring subsystem and additionally processes an order for the system. The processing subsystem automatically processes the customer's inputs and generates drawings for the configured system. Prior to receiving the customer's order, hot runner system components may be partially manufactured in a first phase and placed in inventory. The partially manufactured hot runner components may then be removed from inventory after receiving a customer's order, and further manufactured and assembled in accordance with the customer's parameters in a second phase.06-18-2009
20100034920Melt Transfer Components for a Stack Molding System - A stack molding apparatus is disclosed having a stationary mold platen and a movable mold platen defining a parting line. The apparatus has a melt transfer nozzle extending within a well in the stationary mold platen, the melt transfer nozzle defining a melt channel for receiving and transporting a melt stream. The apparatus also includes a melt transfer component having a spigot portion, a melt channel and an aperture in a sealing surface thereof, wherein the melt transfer component is fixedly attached to the stationary mold platen such that the sealing surface defines a portion of the parting line. The spigot portion is slidably fit within the melt channel of the melt transfer nozzle so that the melt channels are in fluid communication. When the stack molding apparatus is brought to an operating temperature, the melt transfer nozzle slides over the spigot portion to accommodate thermal expansion.02-11-2010
20100044896Injection Molding Apparatus Having a Nozzle Tip Component for Taking a Nozzle Out of Service - A nozzle tip component for taking a nozzle of an injection molding apparatus out-of service, wherein the nozzle tip component has a tapered interior surface that circumferentially surrounds and grips an associated valve pin to lock the valve pin in a closed position and prevent flow of molding material. The injection molding apparatus includes a plurality of nozzles defining nozzle channels, each nozzle associated with a mold gate, and a plurality of valve pins releasably coupled to an actuated valve pin plate. Each valve pin extends through the one of the nozzles for controlling flow of molding material in the nozzle channel, and the actuated valve pin plate is operable to move the plurality of valve pins between open and closed positions of the mold gates.02-25-2010
20100047383Injection Molding Apparatus Having A Nozzle Tip Component For Taking A Nozzle Out-of-Service - An injection molding apparatus includes a plurality of valve-gated nozzles, each nozzle having a respective valve pin that is actuated by an actuator. A nozzle tip component for taking one of the valve-gated nozzles of the injection molding apparatus out-of service, wherein the nozzle tip component has a surface that grips the respective valve pin to lock the valve pin in an out-of-service position thereby preventing flow of molding material into an associated mold cavity and causing disengagement of the valve pin from the actuator.02-25-2010
20100092601Injection Molding Valve Gated Hot Runner Nozzle - A valve gated hot runner nozzle with at least two transition members made of different materials located between a nozzle tip and a mold gate component to provide a thermal transition region. A first transition member in contact with the nozzle tip is less thermally conductive than a second transition member in contact with the mold gate component. The valve pin when in the closed position makes sealing contact with at least the second transition member such that cooling from the mold gate component is transferred to the valve pin to cool the melt in the mold gate area.04-15-2010
20100183762Sealing Arrangement for an Edge Gated Nozzle in an Injection Molding System - An injection molding apparatus having a sealing arrangement between a hot runner manifold and edge-gated nozzle that accommodates thermal expansion during operation is disclosed. A spacer element is axially fixed in position between the manifold and a mold plate in which the nozzle sits. The nozzle includes a reduced diameter spigot portion on an upstream end that is in a telescopic/slidable relationship with a bore of the spacer element. The nozzle includes radially extended nozzle tips axially fixed in position at a downstream end of the nozzle that are in fluid communication with respective mold gates and corresponding mold cavities. In the cold condition, a gap G exists between a shoulder of the nozzle proximate the spigot portion and a corresponding surface of the spacer element bore. Under operating conditions, thermal expansion of the nozzle is accommodated in a direction of the manifold by the gap.07-22-2010
20100183763Injection Molding Apparatus - An injection molding apparatus includes an inlet component, a plurality of nozzles, and a plurality of hoses, each of which is not heated. The hoses are connected between outlets of the inlet component and respective molding material inlets of the nozzles for conveying molding material from the inlet component to the nozzles. Hoses may also be connected between a rail plate and the nozzles for delivering cooling fluid or actuation fluid for an actuator to and from the nozzles. The nozzles may be fastened to a mold plate of the injection molding apparatus, such as by a threaded bushing. A heated insert may at least partially define the mold cavity to heat molding material in the mold cavity.07-22-2010
20100215795Multiple-Gate Injection Molding Apparatus - One or more nozzles define separate nozzle channels. The nozzles are coupled to a manifold, so that each of the nozzle channels communicates with a different mold gate. A molding material distribution insert is coupled to the manifold and has a body defining a distribution channel and a plurality of drop channels equal in number to the nozzle channels. The distribution channel is an open distribution channel formed on an outer surface of the body and enclosed by the manifold. The drop channels intersect the distribution channel and exit the body at a different one of the nozzle channels. A valve pin bushing can extend into the drop channels. Valve pins can extend from actuators, through the valve pin bushing and the drop channels, and to the mold gates. A valve pin holder can be coupled to the actuator and coupled to heads of the valve pins.08-26-2010
20120070532COINJECTION HOT RUNNER INJECTION MOLDING SYSTEM - A coinjection molding apparatus is disclosed that provides a skin material melt stream and a core material melt stream to a nozzle. A nozzle tip of the nozzle defines a central skin material melt passage for receiving the skin material melt stream, an annular core material melt passage for receiving the core material melt stream and an annular outer layer melt passage, which receives a portion of the skin material melt stream from the central skin material melt passage. The skin material melt stream from the central skin material melt passage forms an inner layer of a molded article, the core material melt stream from the core material melt passage forms a core layer of the molded article, and the skin material melt stream from the outer layer melt passage forms an outer layer of the molded article, wherein the three melt streams combine prior to entering a mold cavity.03-22-2012
20120156325Multiple-Gate Injection Molding Apparatus - One or more nozzles define separate nozzle channels. The nozzles are coupled to a manifold, so that each of the nozzle channels communicates with a different mold gate. A molding material distribution insert is coupled to the manifold and has a body defining a distribution channel and a plurality of drop channels equal in number to the nozzle channels. The distribution channel is an open distribution channel formed on an outer surface of the body and enclosed by the manifold. The drop channels intersect the distribution channel and exit the body at a different one of the nozzle channels. A valve pin bushing can extend into the drop channels. Valve pins can extend from actuators, through the valve pin bushing and the drop channels, and to the mold gates. A valve pin holder can be coupled to the actuator and coupled to heads of the valve pins.06-21-2012
20120225148INJECTION MOLDING APPARATUS HAVING A MAGNETIC VALVE PIN COUPLING - An injection molding apparatus is disclosed having an actuated part that is movable in forward and rearward directions with a magnetic valve pin coupling attached thereto. A valve pin for opening and closing a mold gate is coupled to the magnetic valve pin coupling to be movable with the actuated part. When the actuated part is moved in an opening stroke direction and the valve pin experiences a stopping force, the magnetic valve pin coupling permits the valve pin to become decoupled from the actuated part to prevent continued movement of the valve pin with the actuated part.09-06-2012
20130147091VALVE PIN ACTUATOR - A valve pin actuator for an injection molding system includes a housing defining a chamber, the chamber having a nozzle opening portion and a nozzle closing portion. A piston is axially slideable within the chamber between a nozzle open position and a nozzle close position. The piston secures a valve pin to translate axial movements of the piston into axial movements of the pin. The nozzle opening portion of the chamber is configured to receive a first fluid to pressurize the nozzle opening portion to urge the piston towards the nozzle open position. The nozzle closing portion of the chamber is configured to receive a second fluid to pressurize the nozzle closing portion to urge the piston towards the nozzle close position. A fluid passage defined by the piston allows fluid communication between the nozzle opening portion and the nozzle closing portion.06-13-2013
20130207289Coinjection Hot Runner Injection Molding System - A coinjection molding apparatus is disclosed that provides a skin material melt stream and a core material melt stream to a nozzle. The skin material melt stream forms an inner and outer layer of a molded article with the core material melt stream forming a core layer between the inner and outer skin material layers. A volume of the core material for forming the core layer may be manually adjusted between injection cycles to change a thickness of the core layer between a first molded article and a second molded article. Alternatively, a volume of the core material for forming the core layer may be automatically adjusted during an injection cycle to change a thickness of the core layer during formation of the molded article, such that the molded article will have a core layer with at least a first thickness and a second thickness.08-15-2013
20130230617Valve Bushing for an Injection Molding Apparatus - A valve bushing having an actuator portion and a pin guiding component is disclosed. The actuator portion has a cup-shaped body with a stepped bore that defines a chamber in which a piston for opening and closing a valve gate disposed, and also defines a transfer bore extending through a base portion of the cup-shaped body. A stand-off member elevates the cup-shaped body from the manifold. The pin guiding component defines a sealing bore that extends between a body portion and a boss that extends rearward from the body portion. The boss is received in the transfer bore of the cup-shaped body to define a thermal transfer area between the pin guiding component and the actuator portion that is spaced apart from the manifold, and the actuator portion is located relative to the pin guiding component by engagement between the pin guiding component and the stand-off member.09-05-2013
20130243899Edge-Gated Injection Molding Apparatus - An edge-gated injection molding apparatus is disclosed for distributing a melt stream to a plurality of mold cavities aligned on opposing sides of an injection manifold assembly. The injection manifold assembly includes melt outlets aligned on opposing sides thereof with a nozzle seal in fluid communication with each melt outlet for transferring the melt stream to a corresponding mold cavity. A sliding relationship between each nozzle seal and its respective melt outlet while the nozzle seal is securely held relative to the mold gate permits misalignment between the nozzle seal and its respective melt outlet in the cold condition without causing stress on the nozzle seal. Under operating conditions, the sliding relationship permits subsequent alignment between the nozzle seal and its respective melt outlet. The nozzle seal has a two-piece gate seal with components thereof threadably coupled to each other such that relative rotation therebetween applies a sealing preload.09-19-2013
20130266679Coinjection Hot Runner Injection Molding System - A coinjection molding apparatus is disclosed that provides first and second material melt streams to a nozzle. The nozzle defines a first material melt passage for receiving the first material melt stream, a second material melt passage for receiving the second material melt stream and an outer layer melt passage, which receives a portion of the first material melt stream from the first material melt passage. The first material melt stream from the first material melt passage forms an inner layer of a molded article, the second material melt stream from the second material melt passage forms a core layer of the molded article, and the first material melt stream from the outer layer melt passage forms an outer layer of the molded article, wherein the three melt streams combine prior to entering a mold cavity.10-10-2013
20140027084HOT RUNNER MANIFOLDS INTERCONNECTED IN A COMMON PLANE - A hot runner apparatus includes a mold plate defining a pocket; a plurality of sub-manifolds; and a bridge manifold positioned in the pocket and between the sub-manifolds. The bridge manifold and the sub-manifolds are oriented in a common plane. The bridge manifold receives a melt from a melt source. Each of the sub-manifolds is coupled to the bridge manifold to receive the melt from the bridge manifold via a junction between an opening of a network of melt channels within the bridge manifold and an opening of a network of melt channels within each of the sub-manifolds. The sub-manifolds are urged against the bridge manifold to form a seal therebetween, when the bridge manifold and the sub-manifolds thermally expand urging the sub-manifolds against contact regions of a pair of opposing walls of the pocket. The respective opposing walls define a hollow region separated from the respective contact regions by a wall portion.01-30-2014
20140178525Stack Mold Transfer Device - Stack mold transfer device are disclosed that include first and second transfer members having respective first and second transfer channels, first and second valve seats, and first and second valve members. The first valve member defining a flow portion and a first sealing surface and the second valve member defining a second sealing surface and a receiving pocket. When the first and second transfer members are in an engaged configuration, the first and second transfer channels form a common transfer channel. When the transfer device is in a closed-flow configuration, the flow of molding material is blocked, and when the transfer device is in an open-flow configuration, the first sealing surface of the first valve member is slidably received in the receiving pocket of the second valve member and the flow portion of the first valve member is positioned to allow molding material flow within the common transfer channel.06-26-2014
20140248385Coinjection Hot Runner Injection Molding System - A coinjection molding apparatus is disclosed that provides first and second material melt streams to a nozzle. The nozzle defines a first material melt passage for receiving the first material melt stream, a second material melt passage for receiving the second material melt stream and an outer layer melt passage, which receives a portion of the first material melt stream from the first material melt passage. The first material melt stream from the first material melt passage forms an inner layer of a molded article, the second material melt stream from the second material melt passage forms a core layer of the molded article, and the first material melt stream from the outer layer melt passage forms an outer layer of the molded article, wherein the three melt streams combine prior to entering a mold cavity.09-04-2014

Patent applications by Denis Babin, Georgetown CA

Website © 2015 Advameg, Inc.