Patent application number | Description | Published |
20080297328 | TACTILE FEEDBACK MECHANISM USING MAGNETS TO PROVIDE TRIGGER OR RELEASE SENSATIONS - An apparatus for providing tactile feedback to an operator. The apparatus includes first and second magnetic assemblies having first and second magnets, respectively. The apparatus further includes a user input device, such as a trigger, a knob, a release cord, or a joystick, that is connected to at least one of the two assemblies and positions the first magnet proximate to the second magnet such that interaction occurs between the magnetic fields to generate a force that is exerted on the input device. The force may be an opposing, resisting, or attractive force that creates movement of the user input such as resisting a triggering or releasing action in an interactive video game when the poles are of like polarity. The first magnetic assembly may be stationary, and the second magnetic assembly may be connected to the user input device to be positioned relative to the first magnet assembly. | 12-04-2008 |
20090114114 | MAGNETIC PACER FOR CONTROLLING SPEEDS IN AMUSEMENT PARK RIDES - A magnetic pacer system and method for adjusting vehicle speed in an amusement park ride. The system includes a controller and memory that stores speed settings such as upper and lower speed limits for the vehicle in a specific portion of a ride. A magnetic thruster is positioned near the portion of the ride, and a signal or signals are sent from position sensors to the controller. The controller determines the actual velocity of the vehicle as it travels along a direction of travel and acts to compare the determined vehicle velocity with the stored and desired speed settings. The controller then determines a magnetic force to apply to the vehicle including selecting whether the force is along the direction of travel or opposite to provide acceleration or deceleration of the vehicle. The magnetic thruster is selectively operated to generate a magnetic force to act on the vehicle. | 05-07-2009 |
20090209357 | AMUSEMENT PARK RIDE PROVIDING FREE-FLYING EXPERIENCE - A vehicle for simulating flight in a park ride having a rotating drive with supports or radial arms. The vehicle includes a body with seats and passenger restraints. A connection assembly is used to attach the body to a support. The connection assembly includes a linkage assembly allowing the body to radially pivot inward and outward relative to the drive assembly based on the angle of the support arm and rotation rate of the drive assembly. The linkage assembly translates radial movement of the body into rotation of the body about a pitch axis. The pitch axis extends through or proximal to the center of mass of the body, and the pivotal connector that supports the vehicle in a pendular manner is spaced apart and above the center of mass. The linkage assembly may include one or more four-bar linkages to provide two degrees of freedom of the body relative. | 08-20-2009 |
20090266266 | CABLE TOW WHIP RIDE WITH INSIDE CURVES - A whip ride is provided for amusement parks. A platform is provided with a guide slot extending through the platform. A drive assembly is positioned beneath the platform and includes a drive member (e.g., drive cable) moving on a constrained path. A track follows a path horizontally offset from the drive path. The drive assembly includes a bogie or drive truck mounted on the track and pivotably linked to the drive member to be driven by the drive member. A passenger whip vehicle is provided on the platform upper surface and pivotably attached via a connector extending through the guide slot to the bogie. The bogie path includes inside and outside curves, and the bogie track is vertically offset from the drive member such that its path may crossover the drive member to vary the horizontal offset and to locate the bogie track on either side of the drive member. | 10-29-2009 |
20090269175 | VEHICLE TRANSFER DURING OPERATION OF AN OMNIMOVER RIDE - An assembly for transferring passenger-carrying vehicles to and from an amusement park ride conveying a train of vehicles without stopping for passenger loading. The assembly includes a transfer vehicle and a vehicle receiver positioned in the vehicle train. The vehicle receiver includes a connection mechanism, such as an electromagnet selectively operable to capture and release the transfer vehicle. A turntable is positioned adjacent to the track and selectively rotates at a rotation rate. The turntable includes an engagement mechanism, such as an electromagnet, on its periphery operable to capture and release the transfer vehicle (e.g., to capture when the vehicle receiver releases and vice versa). The rotation rate and the ride speed synchronize turntable rotation with travel of the train to mesh placement of the turntable engagement mechanism proximate to the connection mechanism of the vehicle receiver to facilitate hand off of the transfer vehicle without stopping the vehicle train. | 10-29-2009 |
20090272289 | AMUSEMENT PARK RIDE WITH VEHICLES PIVOTING ABOUT A COMMON CHASSIS TO PROVIDE RACING AND OTHER EFFECTS - A ride system is provided that allows selective relative positioning of vehicles in an amusement or theme park ride to simulate racing or other effects. The ride system includes a chassis that is adapted to be supported by and to travel on or along a length of track of a particular ride. A support is attached to the chassis and moves with the chassis during operation of the ride. The ride system includes first and second passenger vehicles that are spaced apart on and supported by the support. A drive assembly is linked to the support and configured to rotate the support about its central axis. During support rotation, the first and second vehicles are moved concurrently relative to the track to alter their relative positioning. The vehicles are each rotated about an axis that extends parallel to the rotation axis, and the rotation may be independent or concurrent. | 11-05-2009 |
20090298603 | OPERATING SHOW OR RIDE ELEMENTS IN RESPONSE TO VISUAL OBJECT RECOGNITION AND TRACKING - A ride or show control apparatus using visual recognition to provide a more interactive experience to guests or participants. The apparatus is adapted for operating a ride or show element, such as a robotic character. The apparatus includes a mechanized or robotic element with movable components positioned near a guest traffic area. The apparatus includes an imaging assembly capturing images of the traffic area and outputting digital image data. A controller is provided that includes a processor using an object recognition module to process the image data to determine whether an object is in the traffic area In response to the object recognition, the control system operates movable components of the mechanized element such as to cause it to speak or move in the direction of the recognized object such as a visitor's face or a badge, hat, or other item worn or carried by a guest or participant. | 12-03-2009 |
20100009767 | ROTATING RIDES WITH INTERACTIVE WATER FEATURES - A rotating ride for use in water parks and other settings to provide ride passengers or park guests with an interactive water experience. The ride includes a structural system with a drive that rotates a support structure such as a wheel frame about a central axis or hub. The ride includes a plurality of vehicles that each includes a body with seating for passengers and that is connected to the support structure and rotates with it. The vehicle assembly includes a water release mechanism that is passenger operable to release water from the vehicle as it is moved through the ride path. The vehicle body may include a water storage reservoir storing a volume of water that then can be selectively released by the passenger. The stored water may be caught as it pours over the vehicle or the vehicle may pass through a pool to scoop up the water. | 01-14-2010 |
20100053029 | MOBILE PROJECTED SETS - One particular implementation of the present invention may take the form of a mobile set configured to include one or more projection devices to display a media presentation to a viewer. The mobile set may be configured to follow a fixed path or may move through autonomous navigation. In one embodiment, the mobile set may be included as part of an amusement park ride to interact with the ride patrons and provide them with a greater entertainment experience. For example, the mobile projected set may be synchronized to move with a carrier vehicle carrying the ride patrons and project a presentation or display to the ride patrons during the ride. Placing the projected scene on a mobile set allows the patrons to interact with the projected scene for a longer period of time then if the projected scene was stationary. Further, the mobile sets may be used to configure and control sightlines through the ride to provide a more dynamic environment for the amusement park ride. | 03-04-2010 |
20100064239 | TIME AND LOCATION BASED GUI FOR ACCESSING MEDIA - A system and method for accessing digital media based on the time and location the media was captured. The digital media is associated with time and location information. The media is presented along with a geographical representation of where the media was captured and an indication of time when the media was captured. | 03-11-2010 |
20100079585 | INTERACTIVE THEATER WITH AUDIENCE PARTICIPATION - A method for providing differing image streams to audience members in an interactive theater setting. The method includes positioning optical filters such as shuttered glasses between audience members and a display surface. During a display period, two or more image streams are provided on the display surface with the optical filters operating to transmit a first image stream. The method includes modifying an operating state of a subset of the optical filters during the display period to transmit a second image stream. The image streams may be provided by a set of projectors that operate concurrently to project the image streams upon the display surface such as over the same portion of the surface. Modifying the operating state may be in response to user input from audience members such as manual switching of operating state or channel by the user with a device linked to the filter or glasses. | 04-01-2010 |
20100326313 | AMUSEMENT PARK RIDE WITH VEHICLES PIVOTING ABOUT A COMMON CHASSIS TO PROVIDE RACING AND OTHER EFFECTS - A ride system is provided that allows selective relative positioning of vehicles in an amusement or theme park ride to simulate racing or other effects. The ride system includes a chassis that is adapted to be supported by and to travel on or along a length of track of a particular ride. A support is attached to the chassis and moves with the chassis during operation of the ride. The ride system includes first and second passenger vehicles that are spaced apart on and supported by the support. A drive assembly is linked to the support and configured to rotate the support about its central axis. During support rotation, the first and second vehicles are moved concurrently relative to the track to alter their relative positioning. The vehicles are each rotated about an axis that extends parallel to the rotation axis, and the rotation may be independent or concurrent. | 12-30-2010 |
20110053688 | ENTERTAINMENT SYSTEM PROVIDING DYNAMICALLY AUGMENTED GAME SURFACES FOR INTERACTIVE FUN AND LEARNING - A system for visually enhancing a game structure having a game surface and objects that move on the game surface. The system includes a projector that projects digital augmentation content or themed images onto the game surface, with the images including static and animated images. The system includes a tracking mechanism that generates tracking data from the game surface and game objects, with the tracking data defining positions of the game objects relative to the game surface. The system includes a controller that processes the tracking data to determine the positions of the game objects. The controller acts to modify the augmentation images in response to the determined positions of the game objects. The augmentation images include a video stream made up of a base image that is mapped to the game surface and an object enhancing image mapped to one of the game objects and its current position. | 03-03-2011 |
20110061558 | AMUSEMENT PARK RIDE WITH A VEHICLE DRIVE THAT DECOUPLES UPON LOSS OF POWER - An amusement park ride with one or more evacuation zones. The ride includes a track with a rail defining a ride path. The ride path includes at least one evacuation zone along a first length of the track at a first height and a non-evacuation zone along a second length of the track with one or more portions at a second height greater than the first height. The track is sloped in the non-evacuation zone toward the evacuation zone. The ride includes a vehicle supported on the rail via roller elements such as load bearing wheels. The ride includes a drive assembly that provides a driving force to selectively move the vehicle along the ride path. The drive assembly is adapted to automatically disengage from the vehicle upon loss of power. The vehicle is free rolling upon loss of power to travel to the evacuation zone based on gravity. | 03-17-2011 |
20110067594 | Amusement Park Ride Using Motion-Driven Positioning for 360-Degree Vehicle Orientation - An amusement park ride adapted for fully rotating a passenger compartment in response to vehicle motion along a guide track. The ride includes a vehicle chassis that engages the guide track and travels along the ride path during operation of the ride. The ride further includes a cam-based positioning assembly that is supported by the vehicle chassis to move with it along the guide track. The positioning assembly operates in response to being moved along the guide track to rotate the passenger compartment. The positioning assembly rotates the passenger compartment in counterclockwise and clockwise directions to provide 360-degree rotation. The positioning assembly includes a cam shaft with three cam follower pairs offset along the shaft and extending outward from the shaft at angular offsets, and three cam rails are used to selectively position the followers to rotate the cam shaft and set the position of the passenger compartment. | 03-24-2011 |
20110088584 | AMUSEMENT PARK RIDE WITH VEHICLES PIVOTING ABOUT A COMMON CHASSIS TO PROVIDE RACING AND OTHER EFFECTS - A ride system is provided that allows selective relative positioning of vehicles in an amusement or theme park ride to simulate racing or other effects. The ride system includes a chassis that is adapted to be supported by and to travel on or along a length of track of a particular ride. A support is attached to the chassis and moves with the chassis during operation of the ride. The ride system includes first and second passenger vehicles that are spaced apart on and supported by the support. A drive assembly is linked to the support and configured to rotate the support about its central axis. During support rotation, the first and second vehicles are moved concurrently relative to the track to alter their relative positioning. The vehicles are each rotated about an axis that extends parallel to the rotation axis, and the rotation may be independent or concurrent. | 04-21-2011 |
20110122152 | SYSTEM AND METHOD FOR STEGANOGRAPHIC IMAGE DISPLAY - A computer-implemented method for generating images. The method includes receiving first and second target images. The method further includes computing a delta image based on a difference between the first target image and the second target image and a technique for multiplexing a first display image with the delta image, where the first display image multiplexed with the delta image, when viewed by a person in an ambient setting, is perceived as the second target image. Advantageously, a hidden image is obscured from an ambient observer, while still providing the ambient observer with a target image that is intended to be perceived. | 05-26-2011 |
20110300957 | AMUSEMENT PARK RIDE WITH CABLE-SUSPENDED VEHICLES - A ride system for moving a passenger vehicle through a dynamically-defined work space. The system includes a track structure that guides one or more motorized or driven carriers on the track structure. The system includes winches on the carrier(s) that are independently operable to set lengths of the vehicle supporting cables, which extend outward from the winches to the vehicle. During operation, the winch systems provide upper anchor points for suspending the passenger vehicle such that these anchor points are selectively positioned. The winches may be independently operated as the carrier(s) travels from a first position to a second position, such that the vehicle body pitches, rolls, or yaws and moves transversely relative to the track. The winches may be operated concurrently to drop or raise the vehicle to define the work space for the vehicle in the vertical direction. Passenger input may interactively control motion of the vehicle. | 12-08-2011 |
20110312428 | TELESCOPING-ARM ROUND RIDE FOR AMUSEMENT PARKS - An amusement park ride that provides an interactive flying experience in a round ride setting by allowing vehicle passengers to move their vehicle in and out horizontally through a fly zone. The ride includes a central support assembly with a structure rotatable about a central axis at one or more rotation speeds. The ride also includes passenger vehicles and, for each vehicle, a support arm assembly that extends outward from the rotatable structure. The support arm assembly includes a support arm and a variable radius mechanism. The support arm is mounted to the rotatable structure and supports the passenger vehicle. The variable radius mechanism operates during rotation of the rotatable structure to vary the arm length or support location of the vehicle on the arm to vary the vehicle's rotation radius. The variable radius mechanism may include a telescoping arm that reciprocates the vehicle along a linear displacement path. | 12-22-2011 |
20120006221 | Intersecting Path Ride - An intersecting path ride providing close vehicle interaction without risk of collision. The ride includes a track assembly defining first and second linear, open channels bisecting at a vehicle path intersection point. The ride includes first and second vehicle guides movable within the channels. The ride includes first and second vehicle subassemblies supported by the guides, and the vehicle subassemblies move or reciprocate with the guides along linear paths defined by the channels. The ride includes a vehicle positioning assembly that concurrently reciprocates the guides back and forth along the linear channels through the intersection point. The vehicle positioning assembly includes a connection link pivotally coupled to the guides, a drive motor with an output shaft, and a crank arm rigidly coupled to the output shaft at one end and pivotally coupled to the connection link at another end moving the midpoint of the link through a circular drive path. | 01-12-2012 |
20120040766 | ROUND RIDE WITH PASSENGER-INITIATED MOTION PROFILE - A round ride with passenger-initiated motion profiles controlling vertical vehicle movements. The ride includes a drive assembly with a rotating hub that includes support arms extending outward from the structure supporting passenger vehicles. Each of the vehicles includes a triggering device capable of generating either an onboard or offboard discrete signal when operated by a passenger causing a controller to select a motion profile from a number of stored profiles that each defines an actuator motion profile (or angular movement of a support arm about its pivotal mounting point to the rotatable central hub). The motion profiles define different angular rotations for a support arm to cause a vehicle to jump to differing heights, and the profile may be chosen by the controller based on vehicle height and position along the circular path and other environmental inputs such as a game state for the vehicle or a show/ride status. | 02-16-2012 |
20120058833 | HIGH AND LOW FLYER RIDE - A round ride is selectively placing passenger vehicles in one of two or more workspaces or vehicle fly zones. The ride includes a drive assembly including a rotating hub structure and a plurality of vehicle support assemblies mounted to the hub. Each of the vehicle support assemblies includes: (a) a vehicle; (b) a support arm supporting the vehicle proximate to a first end; (c) a base pivotally supporting the arm; and (d) a base angle mechanism mounted to the rotatable structure and selectively operable to position the base into a low position and a high position. The vehicle support assemblies are grouped into first and second sets including alternating ones of the vehicle support assemblies. The base angle mechanisms positions the first set of vehicle support assemblies in the low position and the second set of vehicle support assemblies in the high position and later swaps the positions. | 03-08-2012 |
20120071251 | FREE SWING FERRIS WHEEL - A Ferris wheel-type ride. A lever arm is mounted to the wheel rim to freely pivot between front and rear stops. Passenger gondolas, pivotally attached to the lever arms, travel through four zones experiencing differing ride dynamics. In the first zone, the lever arm abuts the front stop while, in the second, the lever arm is spaced apart from the stops and the lever arm is supported from above by the wheel via the lever arm causing the gondola to be vertically lifted and to rotate slower than the hub rotation rate. In the third zone, the lever arm abuts the rear stop and, in the fourth zone, the lever arm is spaced apart from the stops and is supported from below by the wheel as it falls toward the front stop at a rate greater than the hub rotation rate. | 03-22-2012 |
20120088592 | GRAVITY SLIDE RIDE SYSTEM - A rotating hub ride configured to position passenger vehicles at different vehicle radii relative to the hub's axis of rotation. The ride includes curved support arms extending outward from the hub, with a first end coupled to the hub at a lower height than a second end of the arm. A vehicle is attached, via a mounting assembly, to each curved support arm to slide radially inward and outward on the arm in response to forces applied to the vehicle due to rotation of the hub, e.g., at two or more hub rotation rates. The arm or track defines a travel path for radial movement of the vehicle. When hub rotation is halted, the vehicle slides inward on the track to a load position corresponding to a minimum vehicle radius. At increasing hub speeds, the vehicle slides outward to position the vehicle in any of a number of vehicle radii. | 04-12-2012 |
20120137920 | Amusement Park Ride Using Motion-Driven Positioning for 360-Degree Vehicle Orientation - An amusement park ride adapted for fully rotating a passenger compartment in response to vehicle motion along a guide track. The ride includes a vehicle chassis that engages the guide track and travels along the ride path during operation of the ride. The ride further includes a cam-based positioning assembly that is supported by the vehicle chassis to move with it along the guide track. The positioning assembly operates in response to being moved along the guide track to rotate the passenger compartment. The positioning assembly rotates the passenger compartment in counterclockwise and clockwise directions to provide 360-degree rotation. The positioning assembly includes a cam shaft with three cam follower pairs offset along the shaft and extending outward from the shaft at angular offsets, and three cam rails are used to selectively position the followers to rotate the cam shaft and set the position of the passenger compartment. | 06-07-2012 |
20120149479 | RIDER-CONTROLLED SWING RIDE - A swing ride for providing lateral movement to a plurality of passenger vehicles. The ride includes a center hub rotating about its axis. The ride includes, for each of the passenger vehicles, a vehicle support assembly attached to rotate with the hub. The vehicle support assembly includes a flexible support member attached at a first end to the hub and at a second end to one of the vehicles. The vehicle support assembly includes a fulcrum assembly defining a fulcrum or pivot point for the support member between the first and second ends such that the member has a flexible and variable-length flexible arm attached to the vehicle. The fulcrum assembly is selectively positionable to move the fulcrum point in response to user input at the vehicle such that the passenger interactively moves the fulcrum point and thus moves the vehicle laterally inward and outward relative to the spinning hub. | 06-14-2012 |
20120149480 | TWISTER RIDE SYSTEM - A ride system for rotating vehicles through a vertical plane or ride space about a common horizontal axis. The ride system includes an elongated support member with a longitudinal axis. The system includes a housing with a base and a frame supporting the elongated support member with the longitudinal axis spaced apart a distance from the base and such that the longitudinal axis is substantially horizontal. The system also includes a plurality of vehicle support assemblies hanging from the elongated support member. Each of the vehicle support assemblies includes an extension arm supporting a passenger vehicle at one end and attached to the elongated support member at a second end via a support coupling assembly. The support coupling assembly is configured to rotate the extension arm about the longitudinal axis, whereby the passenger vehicle is moved through a vertical plane orthogonal to the longitudinal axis. | 06-14-2012 |
20120172139 | ROUND RIDE WITH CONTOURED AND ROTATING TRACK - A round ride that creates a rotating ride experience with a varying frequency of vehicle elevations. The round ride includes a central hub assembly with a hub and a hub drive that rotates the hub about a central axis at a hub rotation rate. The drive assembly includes support arms extending outward from the hub, upon which are mounted passenger vehicles. The support arms are pivotally mounted to the hub. The round ride includes a track structure with a ring-shaped running surface extending about the central axis and with a track drive rotating the running surface about the central axis at a track rotation rate in the same or differing direction and rate as the hub. The vehicles are vertically supported by the running surface which is contoured to define a series of hills and valleys, and the running surface and the hub are independently rotated about the central axis. | 07-05-2012 |
20120238372 | ROUND RIDE WITH VEHICLE SUSPENDED FROM SUPPORT ARM - A round ride with suspended vehicles from ends of actuated support arms. The ride includes a drive assembly rotating a centrally located hub. The ride also includes a passenger vehicles including at least one input device such as a support arm actuator controller. For each of the passenger vehicles, a vehicle support assembly is provided that supports the passenger vehicle such that the vehicle rotates with the hub. The vehicle support assembly includes a rigid support arm pivotally coupled at a first end to the hub. The support assembly has an actuator that operates in response to signals from the input device to move the support arm through a range of vertical support angles. The support assembly includes a suspension arm connected at a first end for free pivoting about a second or the free end of the support aim and attached at its second end to the passenger vehicle. | 09-20-2012 |
20120281152 | SYSTEM AND METHOD FOR PROJECTING ONTO AN UPPER SURFACE OF A BODY OF WATER - A projection system for projecting light such as images or content upon a liquid surface such as a lake or pool surface. The system includes an agitation assembly selectively operable to agitate a portion of the upper surface of liquid to form a projection screen. The system includes a projector assembly projecting or focusing light onto the projection screen on the upper surface of the liquid. The liquid is translucent to light, but the projection screen on the upper surface reflects a portion of the projected light due to the agitation. The agitation assembly may include an aeration system with a distribution manifold and is positioned below the liquid surface and has outlets discharging gas into the liquid such that air bubbles for the screen. The manifold outlets may be provided at two or more depths, whereby two or more portions of the projection screen are generated at differing times. | 11-08-2012 |
20130014669 | OMNIMOVER RIDE SYSTEM WITH CROSSING PATHSAANM NEMETH; EDWARD A.AACI HERMOSA BEACHAAST CAAACO USAAGP NEMETH; EDWARD A. HERMOSA BEACH CA USAANM CRAWFORD; DAVID W.AACI LONG BEACHAAST CAAACO USAAGP CRAWFORD; DAVID W. LONG BEACH CA US - A ride system with crossing ride paths. A first omnimover assembly is provided that includes a continuous vehicle chain movable along a first ride path and includes vehicles vertically supported above the track at a first height. A second omnimover assembly is provided with a continuous vehicle chain movable along a second ride path that differs from the first ride path and crosses over the first ride path when viewed in plan view. The second omnimover assembly includes vehicles vertically supported below the upper vehicle track at a second height, which may be the same as the first height such that passengers perceive a risk of a collision at the path intersections. The upper track is at a higher elevation than the lower track such that cross overs occur without interference. A synchronization mechanism is provided that synchronizes the movement of the upper and lower vehicle chains. | 01-17-2013 |
20130025491 | FLOATING OMNIMOVER RIDE - A floating omnimover ride with high capacity throughput and enhanced control over speeds of passenger boats. The ride includes a water containment structure with spaced apart sidewalls defining an elongated guide channel that defines a loop-shaped ride path or circuit. The ride includes a volume of liquid contained in the guide channel to a desired depth. The ride also includes a chain of passenger boats floating in the liquid contained in the guide channel. Each of the boats is linked to the two adjacent boats with a connecting link such that the chain of boats is a continuous loop. The chain of boats has a length that is approximately equal to a length of the ride path, and during operation of the ride, the boats in the chain are moved along the loop-shaped ride path at a predefined rate by a pump station moving the liquid in the guide channel. | 01-31-2013 |
20130025492 | ROLLER COASTER WITH ARTICULABLE SEAT BACKS - A roller coaster with seats articulated between vertical and reclined positions. The roller coaster includes a track with a load/unload portion and a ride portion. The coaster includes a vehicle with a body supported on the track and a passenger seat positioned in the body mounted for articulation between a first position and a second position. The roller coaster includes a seat positioning mechanism coupled to the passenger seat operating while the vehicle is in the load/unload portion to articulate the seat into the first position and operating, prior to the vehicle traveling into the ride portion of the ride path, to articulate the seat into the second position. The passenger seat includes a seat back that is substantially vertical in the first position and is at an obtuse angle in the second position or horizontal position, such that a passenger has an upward point of view during the ride. | 01-31-2013 |
20130040744 | RING CAROUSEL RIDE - A carousel ride in which vehicles may move at differing speeds, in differing directions, and each be independently positioned relative to a load/unload platform. In one embodiment, a carousel ride is provided that includes: (1) an inner ring assembly including a first ring supporting vehicles and a drive system operable to rotate the first ring about a center axis of the carousel ride; and (2) an outer ring assembly including a second ring, concentric to the first ring, supporting vehicles and a drive system operable to rotate the second ring about a center axis of the carousel ride. During a portion of a ride, the drive system of the inner ring assembly operates to rotate the first ring at a first rotation rate, and the drive system of the outer ring assembly operates to rotate the second ring at a second rotation rate differing from the first rotation rate. | 02-14-2013 |
20130059670 | OMNITABLE RIDE SYSTEM - A circular omnimover or omnitable ride system. The ride system includes a stationary, centrally-located platform for loading and unloading passengers. A turntable assembly is provided that includes a turntable with an upper surface substantially coplanar with an upper surface of the platform. The turntable has a centrally-located hole or passageway defined by an inner sidewall to receiving the non-rotating platform. Passenger vehicles are mounted along an outer edge of the turntable via translation mechanisms. A drive mechanism rotates the turntable about a central axis at a constant rate. The vehicles are moved through a station space and a show space during one or two full rotations of the turntable. The passenger vehicles are loaded and unloaded in the station space via the platform and then dispatched by the translation mechanism into the show space, which may involve increasing the vehicle's radius and changing its vertical position relative to the turntable. | 03-07-2013 |
20130063702 | PROJECTING ONTO AN UPPER SURFACE OF A BODY OF WATER - A projection system for projecting light such as images or content upon a liquid surface such as a lake or pool surface. The system includes an agitation assembly selectively operable to agitate a portion of the upper surface of liquid to form a projection screen. The system includes a projector assembly projecting or focusing light onto the projection screen on the upper surface of the liquid. The liquid is translucent to light, but the projection screen on the upper surface reflects a portion of the projected light due to the agitation. The agitation assembly may include an aeration system with a distribution manifold and is positioned below the liquid surface and has outlets discharging gas into the liquid such that air bubbles for the screen. The manifold outlets may be provided at two or more depths, whereby two or more portions of the projection screen are generated at differing times. | 03-14-2013 |
20130087066 | INTERSECTING PATH RIDE - An intersecting path ride providing close vehicle interaction without risk of collision. The ride includes a track assembly defining first and second linear, open channels bisecting at a vehicle path intersection point. The ride includes first and second vehicle guides movable within the channels. The ride includes first and second vehicle subassemblies supported by the guides, and the vehicle subassemblies move or reciprocate with the guides along linear paths defined by the channels. The ride includes a vehicle positioning assembly that concurrently reciprocates the guides back and forth along the linear channels through the intersection point. The vehicle positioning assembly includes a connection link pivotally coupled to the guides, a drive motor with an output shaft, and a crank arm rigidly coupled to the output shaft at one end and pivotally coupled to the connection link at another end moving the midpoint of the link through a circular drive path. | 04-11-2013 |
20130090175 | GRAVITY SLIDE RIDE - A rotating hub ride configured to position passenger vehicles at different vehicle radii relative to the hub's axis of rotation. The ride includes curved support arms extending outward from the hub, with a first end coupled to the hub at a lower height than a second end of the arm. A vehicle is attached, via a mounting assembly, to each curved support arm to slide radially inward and outward on the arm in response to forces applied to the vehicle due to rotation of the hub, e.g., at two or more hub rotation rates. The arm or track defines a travel path for radial movement of the vehicle. When hub rotation is halted, the vehicle slides inward on the track to a load position corresponding to a minimum vehicle radius. At increasing hub speeds, the vehicle slides outward to position the vehicle in any of a number of vehicle radii. | 04-11-2013 |
20130118370 | AMUSEMENT PARK RIDE SYSTEM WITH CROSSING PATHS - A ride system with crossing ride paths. A first assembly is provided that includes a first set of vehicles movable along a first ride path, and the first vehicle set is vertically supported above the track at a first height. A second assembly is provided with a second set of vehicles movable along a second ride path that differs from the first ride path and crosses over the first ride path when viewed in plan view. The second vehicle set is vertically supported below the upper vehicle track at a second height, which may be the same as the first height such that passengers perceive a collision risk at path intersections. The upper track is at a higher elevation than the lower track such that track crossovers occur without interference. A synchronization mechanism synchronizes movement of the upper and lower sets of vehicles to avoid collisions at crossover points. | 05-16-2013 |
20130145953 | AMUSEMENT PARK RIDE WITH PASSENGER LOADING SEPARATED FROM VEHICLE INSERTION INTO SIMULATORS - A ride system for efficiently utilizing a simulator(s) or immersive environment assembly. The ride system includes a closed-loop track and a plurality of passenger vehicles each configured for traveling along a ride path defined by the closed-loop track. The ride system includes a simulator positioned adjacent to the closed-loop track. The ride system also includes a vehicle transfer mechanism. This mechanism is typically positioned along the track (or to provide part of the track) near the simulator. In operation, the transfer mechanism receives or captures a first one of the vehicles and transfers the first vehicle a distance away from the ride path and into the simulator and its immersive entertainment environment. The transfer mechanism is configured such that a second one of the vehicles trailing the first vehicle travels along the ride path past the simulator while the first vehicle is positioned within the simulator. | 06-13-2013 |
20130199431 | Passenger-Rotatable Boat - A boat configured for rotating in response to passenger inputs such as rotation of a wheel or pumping a hand pump. The boat includes a hull with an upper portion for receiving at least one passenger and a lower portion comprising a bottom contact surface. Further, the boat includes a rider interface, provided on the upper portion of the hull, that is configured for receiving physical input from the passenger. The boat also includes a torque producing assembly with a boat-to-water interface provided on the lower portion below a waterline region and above bottom contact surface. The boat-to-water interface applies a force to water adjacent to the lower portion of the hull in response to the received physical input, whereby the boat rotates due to a resistive force applied by the water in response to the applied force. | 08-08-2013 |
20130236040 | AUGMENTED REALITY (AR) AUDIO WITH POSITION AND ACTION TRIGGERED VIRTUAL SOUND EFFECTS - An augmented reality (AR) audio system for augmenting environment or ambient sound with sounds from a virtual speaker or sound source positioned at a location in the space surrounding an AR participant. The sound from the virtual speaker may be triggered by an action of the listener and/or by the location or relative orientation of the listener. The AR audio system includes stereo earphones receiving an augmented audio track from a control unit, and binaural microphones are provided to capture ambient sounds. The control unit operates to process trigger signals and retrieve one or more augmentation sounds. The control unit uses an AR audio mixer to combine the ambient sound from the microphones with the augmentation sounds to generate left and right ear augmented audio or binaural audio, which may be modified for acoustic effects of the environment including virtual objects in the environment or virtual characteristics of real objects. | 09-12-2013 |
20140309035 | INTERACTIVE LEAN SENSOR FOR CONTROLLING A VEHICLE MOTION SYSTEM AND NAVIGATING VIRTUAL ENVIRONMENTS - An interactive system adapted for lean-based control of ride or video game experiences. The system includes a vehicle seat and a motion base with a vehicle base upon which the vehicle seat is mounted. The system includes an actuator assembly moving the vehicle base and seat. A control system interprets sensor input signals and generates control signals to operate the actuator assembly to move the vehicle base and seat. Force sensors positioned in the vehicle seat sense forces applied by the passenger to the vehicle seat and transmit sensor data signals to the control system. The control signals operating the driver assembly are generated based on the sensor data, which is output from left and right sensors provided in a bench of the vehicle seat as well as in a front and a back support to provide X and Y-axis values based on passenger leaning in the vehicle seat. | 10-16-2014 |