Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


David K. Carlson, San Jose US

David K. Carlson, San Jose, CA US

Patent application numberDescriptionPublished
20090029528METHOD AND APPARATUS FOR CLEANING A SUBSTRATE SURFACE - The present invention generally provides apparatus and method for forming a clean and damage free surface on a semiconductor substrate. One embodiment of the present invention provides a system that contains a cleaning chamber that is adapted to expose a surface of substrate to a plasma cleaning process prior to forming an epitaxial layer thereon. In one embodiment, a method is employed to reduce the contamination of a substrate processed in the cleaning chamber by depositing a gettering material on the inner surfaces of the cleaning chamber prior to performing a cleaning process on a substrate. In one embodiment, oxidation and etching steps are repeatedly performed on a substrate in the cleaning chamber to expose or create a clean surface on a substrate that can then have an epitaxial placed thereon. In one embodiment, a low energy plasma is used during the cleaning step.01-29-2009
20090044699In Situ Cleaning of CVD System Exhaust - Embodiments of the invention relate to methods and apparatuses for forming films using CVD. One or more method and apparatus embodiments include preventing the formation of bonds and/or breaking bonds that permit polymers to form in an exhaust line of a CVD apparatus.02-19-2009
20090211523Apparatus to Control Semiconductor Film Deposition Characteristics - Systems and apparatus are disclosed for adjusting the temperature of at least a portion of the surface of a reaction chamber during a film formation process to control film properties. More than one portion of the chamber surface may be temperature-modulated.08-27-2009
20090314205SEMICONDUCTOR PROCESS CHAMBER VISION AND MONITORING SYSTEM - A system for monitoring a process inside a high temperature semiconductor process chamber by capturing images is disclosed. Images are captured through a borescope by a camera. The borescope is protected from high temperatures by a reflective sheath and an Infrared (IR) cur-off filter. Images can be viewed on a monitor and can be recorded by a video recording device. Images can also be processed by a machine vision system. The system can monitor the susceptor and a substrate on the susceptor and surrounding structures. Deviations from preferred geometries of the substrate and deviations from preferred positions of susceptor and the substrate can be detected. Actions based on the detections of deviations can be taken to improve the performance of the process. Illumination of a substrate by a laser for detecting deviations in substrate geometry and position is also disclosed.12-24-2009
20100071622POLYMERIC COATING OF SUBSTRATE PROCESSING SYSTEM COMPONENTS FOR CONTAMINATION CONTROL - A method of treating a metal surface of a portion of a substrate processing system to lower a defect concentration near a processed surface of a substrate includes forming a protective coating on the metal surface, wherein the protective coating includes nickel (Ni) and a fluoropolymer. Forming the protective coating on the metal surface can further include forming a nickel layer on the metal surface, impregnating the nickel layer with a fluoropolymer, and removing fluoropolymer from the surface leaving a predominantly nickel surface so the fluoropolymer is predominantly subsurface. A substrate processing system includes a process chamber into which a reactant gas is introduced, a pumping system for removing material from the process chamber, a first component with a protective coating, wherein the protective coating forms a surface of the component which is exposed to an interior of the substrate processing chamber or an interior of the pumping system. The protective coating includes nickel (Ni) and a flouropolymer.03-25-2010
20100275674METHODS AND APPARATUS FOR INSITU ANALYSIS OF GASES IN ELECTRONIC DEVICE FABRICATION SYSTEMS - Systems and methods are disclosed that include adjusting a pressure level of a sample gas in a testing chamber, for example, using a pressurized inert reference gas, and determining a composition of the adjusted sample gas. By adjusting the pressure level of the sample gas, the composition of the sample gas may be determined more accurately than otherwise possible. Numerous other aspects are disclosed.11-04-2010
20110100554PARALLEL SYSTEM FOR EPITAXIAL CHEMICAL VAPOR DEPOSITION - Embodiments of a parallel system for epitaxial deposition are disclosed herein. In some embodiments, a parallel system for epitaxial deposition includes a first body having a first process chamber and a second process chamber disposed within the first body; a shared gas injection system coupled to each of the first and the second process chambers; and a shared exhaust system coupled to each of the first and second process chambers, the exhaust system having independent control of an exhaust pressure from each chamber. In some embodiments, the gas injection system provides independent control of flow rate of a gas entering each chamber.05-05-2011
20110155058SUBSTRATE PROCESSING APPARATUS HAVING A RADIANT CAVITY - Methods and apparatus for processing substrates are disclosed herein. In some embodiments, an apparatus for processing a substrate may include a substrate support having a base having a convex surface, an annular ring disposed on the base, and an edge ring disposed on the annular ring to support a substrate, wherein the base, annular ring, and edge ring form a radiant cavity capable of reflecting energy radiated from a backside of a substrate when disposed on the edge ring and wherein the backside of the substrate faces the convex surface of the base. Alternatively or in combination, in some embodiments, the base may include a metal layer encapsulated between a transparent non-metal upper layer and a non-metal lower layer.06-30-2011
20110217466APPARATUS AND METHODS FOR CHEMICAL VAPOR DEPOSITION - Methods and apparatus are disclosed for the formation of vaporizing liquid precursor materials. The methods or apparatus can be used as part of a chemical vapor deposition apparatus or system, for example for forming films on substrates. The methods and apparatus involve providing a vessel for containing a liquid precursor and diffusing element having external cross-section dimensions substantially equal to the internal cross-sectional dimensions of the vessel.09-08-2011
20110263103METHOD AND APPARATUS FOR CLEANING A SUBSTRATE SURFACE - Embodiments described herein provide methods for processing a substrate. One embodiment comprises positioning a substrate in a processing region of a processing chamber, exposing a surface of the substrate disposed in the processing chamber to an oxygen containing gas to form a first oxygen containing layer on the surface, removing at least a portion of the first oxygen containing layer to expose at least a portion of the surface of the substrate, and exposing the surface of the substrate to an oxygen containing gas to form a second oxygen containing layer on the surface.10-27-2011
20110299282WINDOW ASSEMBLY FOR USE IN SUBSTRATE PROCESSING SYSTEMS - Embodiments of a window assembly are provided herein. In some embodiments, a window assembly for use in a substrate processing system comprising a first window at least partially transparent to light energy; a second window transparent to light energy and substantially parallel to the first window; and a separator disposed proximate the peripheral edges of the first and second windows and defining a sealed gap between the first and second windows, wherein the separator has an inlet and outlet to flow a gas through the sealed gap. In some embodiments, one or more support elements are disposed in the sealed gap to maintain a substantially uniform gap distance between the first and second windows. In some embodiments, a plurality of light adjusting elements are disposed in the gap to adjust one or more properties of light energy that passes through the light adjusting element.12-08-2011
20110306186METHODS FOR LOW TEMPERATURE CONDITIONING OF PROCESS CHAMBERS - Methods for removing residue from interior surfaces of process chambers are provided herein. In some embodiments, a method of conditioning interior surfaces of a process chamber may include maintaining a process chamber at a first pressure and at a first temperature of less than about 800 degrees Celsius; providing a process gas to the process chamber at the first pressure and the first temperature, wherein the process gas comprises chlorine and nitrogen to remove residue disposed on interior surfaces of the process chamber; and increasing the pressure in the process chamber from the first pressure to a second pressure while continuing to provide the process gas to the process chamber.12-15-2011
20120006092METHODS AND APPARATUS FOR INSITU ANALYSIS OF GASES IN ELECTRONIC DEVICE FABRICATION SYSTEMS - Systems and methods are disclosed that include adjusting a pressure level of a sample gas in a testing chamber, for example, using a pressurized inert reference gas, and determining a composition of the adjusted sample gas. By adjusting the pressure level of the sample gas, the composition of the sample gas may be determined more accurately than otherwise possible. Numerous other aspects are disclosed.01-12-2012
20120077335METHODS FOR DEPOSITING GERMANIUM-CONTAINING LAYERS - Methods for depositing germanium-containing layers on silicon-containing layers are provided herein. In some embodiments, a method may include depositing a first layer atop an upper surface of the silicon-containing layer, wherein the first layer comprises predominantly germanium (Ge) and further comprises a lattice adjustment element having a concentration selected to enhance electrical activity of dopant elements, wherein the dopant elements are disposed in at least one of the first layer or in an optional second layer deposited atop of the first layer, wherein the optional second layer, if present, comprises predominantly germanium (Ge). In some embodiments, the second layer is deposited atop the first layer. In some embodiments, the second layer comprises germanium (Ge) and dopant elements.03-29-2012
20120240853LINER ASSEMBLY FOR CHEMICAL VAPOR DEPOSITION CHAMBER - Embodiments described herein relate to an apparatus and method for lining a processing region within a chamber. In one embodiment, a modular liner assembly for a substrate processing chamber is provided. The modular liner assembly includes a first liner and a second liner, each of the first liner and second liner comprising an annular body sized to be received in a processing volume of a chamber, and at least a third liner comprising a body that extends through the first liner and the second liner, the third liner having a first end disposed in the process volume and a second end disposed outside of the chamber.09-27-2012
20120247386METHOD AND APPARATUS FOR THE SELECTIVE DEPOSITION OF EPITAXIAL GERMANIUM STRESSOR ALLOYS - A method and apparatus for forming heterojunction stressor layers is described. A germanium precursor and a metal precursor are provided to a chamber, and an epitaxial layer of germanium-metal alloy formed on the substrate. The metal precursor is typically a metal halide, which may be provided by subliming a solid metal halide or by contacting a pure metal with a halogen gas. The precursors may be provided through a showerhead or through a side entry point, and an exhaust system coupled to the chamber may be separately heated to manage condensation of exhaust components.10-04-2012
20120266819SEMICONDUCTOR SUBSTRATE PROCESSING SYSTEM - Apparatus for processing substrates are provided. In some embodiments, a processing system may include a first transfer chamber and a first process chamber coupled to the transfer chamber, the process chamber further comprising a substrate support to support a processing surface of a substrate within the process chamber, an injector disposed to a first side of the substrate support and having a first flow path to provide a first process gas and a second flow path to provide a second process gas independent of the first process gas, wherein the injector provides the first and second process gases across the processing surface of the substrate, a showerhead disposed above the substrate support to provide the first process gas to the processing surface, and an exhaust port disposed to a second side of the substrate support, opposite the injector, to exhaust the first and second process gases from the process chamber.10-25-2012
20120266984CHEMICAL DELIVERY SYSTEM - Embodiments of chemical delivery systems disclosed herein may include an enclosure; a first compartment disposed within the enclosure and having a plurality of first conduits to carry a first set of chemical species, the first compartment further having a first draw opening and a first exhaust opening to facilitate flow of a purge gas through the first compartment; and a second compartment disposed within the enclosure and having a plurality of second conduits to carry a second set of chemical species, the second compartment further having a second draw opening and a second exhaust opening to facilitate flow of the purge gas through the second compartment, wherein the first set of chemical species is different than the second set of chemical species, and wherein a draw velocity of the purge gas through the second compartment is higher than the draw velocity of the purge gas through the first compartment.10-25-2012
20120270384APPARATUS FOR DEPOSITION OF MATERIALS ON A SUBSTRATE - Methods and apparatus for deposition of materials on a substrate are provided herein. In some embodiments, an apparatus for processing a substrate may include a process chamber having a substrate support disposed therein to support a processing surface of a substrate, an injector disposed to a first side of the substrate support and having a first flow path to provide a first process gas and a second flow path to provide a second process gas independent of the first process gas, wherein the injector is positioned to provide the first and second process gases across the processing surface of the substrate, a showerhead disposed above the substrate support to provide the first process gas to the processing surface of the substrate, and an exhaust port disposed to a second side of the substrate support, opposite the injector, to exhaust the first and second process gases from the process chamber.10-25-2012
20120282714SUSCEPTOR WITH BACKSIDE AREA OF CONSTANT EMISSIVITY - Methods and apparatus for providing constant emissivity of the backside of susceptors are described. Provided is a method comprising: providing a susceptor in a deposition chamber, the susceptor comprising a susceptor plate and a layer comprising an oxide, a nitride, an oxynitride, or combinations thereof, the layer being stable in the presence of the reactive process gases; and locating the wafer on a support surface of the susceptor plate. The method can further comprise selectively depositing an epitaxial layer or a non-epitaxial layer on a surface of the wafer. The method can also further comprise selectively etching to maintain the oxide, nitride, oxynitride, or combinations thereof layer.11-08-2012
20130068390METHOD AND APPARATUS FOR CLEANING A SUBSTRATE SURFACE - Embodiments described herein provide apparatus and methods for processing a substrate. One embodiment comprises a cleaning chamber. The cleaning chamber comprises one or more walls that form a low energy processing region, a plasma generating source to deliver electromagnetic energy to the low energy processing region, a first gas source to deliver a silicon containing gas or a germanium containing gas to the low energy processing region, a second gas source to deliver a oxidizing gas to the low energy processing region, an etching gas source to deliver a etching gas to the low energy processing region, and a substrate support having a substrate supporting surface, a biasing electrode, and a substrate support heat exchanging device to control the temperature of the substrate supporting surface.03-21-2013
20130105483APPARATUS FOR SUBLIMATING SOLID STATE PRECURSORS05-02-2013
20130109159GAS DISPERSION APPARATUS05-02-2013
20130220221METHOD AND APPARATUS FOR PRECURSOR DELIVERY - Methods and apparatus for delivering a gas mixture to a process chamber are provided herein. In some embodiments, a precursor delivery apparatus may include an ampoule having a body with a first volume to hold a liquid precursor, an inlet to receive the liquid precursor and a carrier gas, and an outlet to flow a gas mixture of the liquid precursor and the carrier gas from the ampoule; a first heater disposed proximate to or in the first volume to heat the liquid precursor disposed in the first volume proximate to or at a first location within the first volume where the liquid precursor contacts the carrier gas; and a heat transfer apparatus disposed about the body to at least one of provide heat to or remove heat from the ampoule.08-29-2013
20130256760METHOD FOR FORMING GROUP III/V CONFORMAL LAYERS ON SILICON SUBSTRATES - A method for forming a conformal group III/V layer on a silicon substrate and the resulting substrate with the group III/V layers formed thereon. The method includes removing the native oxide from the substrate, positioning a substrate within a processing chamber, heating the substrate to a first temperature, cooling the substrate to a second temperature, flowing a group III precursor into the processing chamber, maintaining the second temperature while flowing a group III precursor and a group V precursor into the processing chamber until a conformal layer is formed, heating the processing chamber to an annealing temperature, while stopping the flow of the group III precursor, and cooling the processing chamber to the second temperature. Deposition of the III/V layer may be made selective through the use of halide gas etching which preferentially etches dielectric regions.10-03-2013
20130269613METHODS AND APPARATUS FOR GENERATING AND DELIVERING A PROCESS GAS FOR PROCESSING A SUBSTRATE - Methods and apparatus for generating and delivering process gases for processing substrates are provided herein. In some embodiments, an apparatus for processing a substrate may include a container comprising a lid, a bottom, and a sidewall, wherein the lid, the bottom, and the sidewall define an open area; a solid precursor collection tray disposed within the open area; a gas delivery tube disposed within the open area and extending toward the solid precursor collection tray to provide a gas proximate the solid precursor collection tray; and a purge flow conduit coupled to the open area.10-17-2013
20130276702GAS RECLAMATION AND ABATEMENT SYSTEM FOR HIGH VOLUME EPITAXIAL SILICON DEPOSITION SYSTEM - Gas reclaim and abatement are provided herein. In some embodiments, a gas reclaim and abatement system may include a chamber having walls defining an interior volume, a first body extending into the interior volume and having a channel disposed therein to provide a first gas to the chamber, wherein the first body is spaced apart from the walls to define a reaction volume between the first body and the walls, a plurality of RF coils disposed about the first body to provide RF energy to heat the first body, wherein the plurality of RF coils are disposed proximate the walls of the chamber on a side of the reaction volume opposite the first body, and a ceramic layer disposed about the first body, wherein the ceramic layer has one or more openings to provide a second gas to the reaction volume of the chamber through the ceramic layer.10-24-2013
20130319013COMPACT AMPOULE THERMAL MANAGEMENT SYSTEM - Apparatus for thermal management of a precursor for use in substrate processing are provided herein. In some embodiments, an apparatus for thermal management of a precursor for use in substrate processing may include a body having an opening sized to receive a storage container having a liquid or solid precursor disposed therein, the body fabricated from thermally conductive material; one or more thermoelectric devices coupled to the body proximate the opening; and a heat sink coupled to the one or more thermoelectric devices.12-05-2013
20130319015COMPACT AMPOULE THERMAL MANAGEMENT SYSTEM - Methods and apparatus for thermal management of a precursor for use in substrate processing are provided herein. In some embodiments, an apparatus for thermal management of a precursor for use in substrate processing may include a body having an opening sized to receive a storage container having a liquid or solid precursor disposed therein, the body fabricated from thermally conductive material; one or more thermoelectric devices coupled to the body proximate the opening; a heat sink coupled to the one or more thermoelectric devices; and a fan disposed proximate to a back side of the heat sink to provide a flow of air to the heat sink.12-05-2013
20140060433GAS EXHAUST FOR HIGH VOLUME, LOW COST SYSTEM FOR EPITAXIAL SILICON DEPOSITION - Apparatus for the removal of exhaust gases are provided herein. In some embodiments, an apparatus may include a carrier for supporting one or more substrates in a substrate processing tool, the carrier having a first exhaust outlet, and an exhaust assembly including a first inlet disposed proximate the carrier to receive process exhaust from the first exhaust outlet of the carrier, a second inlet to receive a cleaning gas, and an outlet to remove the process exhaust and the cleaning gas.03-06-2014
20140060434GAS INJECTOR FOR HIGH VOLUME, LOW COST SYSTEM FOR EPITAXIAL SILICON DEPOSITON - Apparatus for use in a substrate processing chamber are provided herein. In some embodiments, a gas injector for use in a process chamber may include first set of gas orifices configured to provide a jet flow of a first process gas into the process chamber, and a second set of gas orifices configured to provide a laminar flow of a second process gas into the process chamber, wherein the first set of gas orifices are disposed between at least two gas orifices of the second set of gas orifices.03-06-2014
20140060435DOORS FOR HIGH VOLUME, LOW COST SYSTEM FOR EPITAXIAL SILICON DEPOSITION - Apparatus for use in an inline substrate processing tool are provided herein. In some embodiments, a door for use in an inline substrate processing tool between a first and a second substrate processing module coupled to one another in a linear arrangement may include a reflective body disposed between two cover plates of substantially transparent material, configured to reflect light and heat energy into each of the at first and second substrate processing modules, wherein the door is selectively movable, via an actuator coupled to the door, between an open position that fluidly couples the first and second substrate processing modules to a closed position that isolates the first substrate processing module from the second substrate processing module.03-06-2014
20140099778INDEXED INLINE SUBSTRATE PROCESSING TOOL - In some embodiments, an indexed inline substrate processing tool may include a substrate carrier having a base and pair of opposing substrate supports having respective substrate support surfaces that extend upwardly and outwardly from the base; and a plurality of modules coupled to one another in a linear arrangement, wherein each module of the plurality of modules comprises an enclosure having a first end, a second end, and a lower surface to support the substrate carrier and to provide a path for the substrate carrier to move linearly through the plurality of modules, and wherein at least one module of the plurality of modules comprises: a window disposed in a side of the enclosure; a heating lamp coupled to the side of the enclosure; a gas inlet disposed proximate a top of the enclosure; and an exhaust disposed opposite the gas inlet.04-10-2014
20140137801EPITAXIAL CHAMBER WITH CUSTOMIZABLE FLOW INJECTION - Apparatus for processing a substrate in a process chamber are provided here. In some embodiments, a gas injector for use in a process chamber includes a first set of outlet ports that provide an angled injection of a first process gas at an angle to a planar surface, and a second set of outlet ports proximate the first set of outlet ports that provide a pressurized laminar flow of a second process gas substantially along the planar surface, the planar surface extending normal to the second set of outlet ports.05-22-2014
20140159112METHOD FOR FORMING GROUP III/V CONFORMAL LAYERS ON SILICON SUBSTRATES - A method for forming a conformal group III/V layer on a silicon substrate and the resulting substrate with the group III/V layers formed thereon. The method includes removing the native oxide from the substrate, positioning a substrate within a processing chamber, heating the substrate to a first temperature, cooling the substrate to a second temperature, flowing a group III precursor into the processing chamber, maintaining the second temperature while flowing a group III precursor and a group V precursor into the processing chamber until a conformal layer is formed, heating the processing chamber to an annealing temperature, while stopping the flow of the group III precursor, and cooling the processing chamber to the second temperature. Deposition of the III/V layer may be made selective through the use of halide gas etching which preferentially etches dielectric regions.06-12-2014
20140199056QUARTZ UPPER AND LOWER DOMES - Embodiments of the invention relate to a dome assembly. The dome assembly includes an upper dome comprising a central window, and an upper peripheral flange engaging the central window at a circumference of the central window, wherein a tangent line on an inside surface of the central window that passes through an intersection of the central window and the upper peripheral flange is at an angle of about 8° to about 16° with respect to a planar upper surface of the peripheral flange, a lower dome comprising a lower peripheral flange and a bottom connecting the lower peripheral flange with a central opening, wherein a tangent line on an outside surface of the bottom that passes through an intersection of the bottom and the lower peripheral flange is at an angle of about 8° to about 16° with respect to a planar bottom surface of the lower peripheral flange.07-17-2014
20140261185EPI BASE RING - Embodiments described herein relate to a base ring assembly for use in a substrate processing chamber. In one embodiment, the base ring assembly comprises a ring body sized to be received within an inner circumference of the substrate processing chamber, the ring body comprising a loading port for passage of the substrate, a gas inlet, and a gas outlet, wherein the gas inlet and the gas outlet are disposed at opposing ends of the ring body, and an upper ring configured to dispose on a top surface of the ring body, and a lower ring configured to dispose on a bottom surface of the ring body, wherein the upper ring, the lower ring, and the ring body, once assembled, are generally concentric or coaxial.09-18-2014
20150020891CHAMBER PRESSURE CONTROL APPARATUS FOR CHEMICAL VAPOR DEPOSITION SYSTEMS - In one embodiment, a pressure control assembly includes a cylindrical hollow body having an opening to receive a ballast gas, a first and second flange, and a first and second cone. The first flange is coupled to a first end of the body, and a second flange is coupled to an opposing end of the body. The first cone is coupled to the first flange, and the second cone is coupled to the second flange. A method for controlling pressure in a chamber includes measuring a pressure of the chamber and a pressure of an exhaust system coupled to the chamber. The method includes dynamically adjusting the pressure in the exhaust system in order to adjust the pressure in the chamber, by creating a first pressure drop that is greater than a second pressure drop in the exhaust system.01-22-2015
20150050753ACCELERATED RELAXATION OF STRAIN-RELAXED EPITAXIAL BUFFERS BY USE OF INTEGRATED OR STAND-ALONE THERMAL PROCESSING - Implementations of the present disclosure generally relate to methods and apparatus for forming a film on a substrate. More particularly, implementations of the present disclosure relate to methods and apparatus for heteroepitaxial growth of crystalline films. In one implementation, a method of heteroepitaxial deposition of a strain relaxed buffer (SRB) layer on a substrate is provided. The method comprises epitaxially depositing a buffer layer over a dissimilar substrate, rapidly heating the buffer layer to relax the buffer layer, rapidly cooling the buffer layer and determining whether the buffer layer has achieved a desired thickness.02-19-2015

Patent applications by David K. Carlson, San Jose, CA US

Website © 2015 Advameg, Inc.