Patent application number | Description | Published |
20080218429 | Phased Array Antenna Applications on Universal Frequency Translation - A universal frequency translation module (UFT) frequency translates an electromagnetic (EM) input signal by sampling the EM input signal according to a periodic control signal (also called an aliasing signal). By controlling the relative sampling time, the UFT module implements a relative phase shift during frequency translation. In other words, a relative phase shift can be introduced in the output signal by sampling the input signal at one point in time relative to another point in time. As such, the UFT module can be configured as an integrated frequency translator and phase-shifter. This includes the UFT module as an integrated down-converter and phase shifter, and the UFT module as an integrated up-converter and phase shifter. Applications of universal frequency translation and phase shifting include phased array antennas that utilize integrated frequency translation and phase shifting technology to steer the one or more main beams of the phased array antenna. | 09-11-2008 |
20080270170 | Networking Methods and Systems - A network system includes integrated radio transceivers and digitizers, integrated baseband processors and device controllers, digital interfaces there between, and architectures and partitions for same. Licensing methodologies are provided for implementing the features described herein, and for other products and services. | 10-30-2008 |
20080272841 | Systems and Methods of RF Power Transmission, Modulation, and Amplification, including Embodiments for Extending RF Transmission Bandwidth - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 11-06-2008 |
20080285681 | Systems and Methods of RF Power Transmission, Modulation, and Amplification - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 11-20-2008 |
20080298509 | RF Power Transmission, Modulation, and Amplification, Including Embodiments for Generating Vector Modulation Control Signals - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 12-04-2008 |
20080315946 | Combiner-Less Multiple Input Single Output (MISO) Amplification with Blended Control - Multiple-Input-Single-Output (MISO) amplification and associated VPA control algorithms are provided herein. According to embodiments of the present invention, MISO amplifiers driven by VPA control algorithms outperform conventional outphasing amplifiers, including cascades of separate branch amplifiers using conventional power combiner technologies. MISO amplifiers can be operated at enhanced efficiencies over the entire output power dynamic range by blending the control of the power source, source impedances, bias levels, outphasing, and branch amplitudes. These blending constituents are combined to provide an optimized transfer characteristic function. | 12-25-2008 |
20090072898 | Systems and Methods of RF Power Transmission, Modulation, and Amplification, Including Blended Control Embodiments - Embodiments of the present invention enable a blended control approach to generate a desired output waveform in an outphasing-based system. Embodiments of blended control according to the present invention combine outphasing with bias and/or amplitude control to yield an accurate, practical, and producible system with substantially comparable performance to that of a theoretical ideal outphasing system, but without the isolation and accuracy requirements of outphasing alone. | 03-19-2009 |
20090091384 | Systems and methods of RF power transmission, modulation and amplification - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 04-09-2009 |
20090203345 | Method and system for down-converting an Electromagnetic signal, transforms for same, and Aperture relationships - Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc.) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. | 08-13-2009 |
20090298433 | Systems and Methods of RF Power Transmission, Modulation, and Amplification - Embodiments of the present invention reduce or eliminate the need for fixed frequency high Q band filtering for both full duplex (FDD) and half duplex (TDD) systems. Transceiver architectures according to embodiments of the present invention can be designed to have a single input/output for both FDD and TDD based standards. Further, according to embodiments, because the duplexer and/or SAW power losses are lowered or removed altogether, the system power output requirements can be met more easily and with higher efficiency. | 12-03-2009 |
20090318097 | Method and System for Frequency Up-Conversion - A method and system is described wherein a signal with a lower frequency is up-converted to a higher frequency. In one embodiment, the higher frequency signal is used as a stable frequency and phase reference. In another embodiment, the invention is used as a transmitter. The up-conversion is accomplished by controlling a switch with an oscillating signal, the frequency of the oscillating signal being selected as a sub-harmonic of the desired output frequency. When the invention is being used as a frequency or phase reference, the oscillating signal is not modulated, and controls a switch that is connected to a bias signal. When the invention is being used in the frequency modulation (FM) or phase modulation (PM) implementations, the oscillating signal is modulated by an information signal before it causes the switch to gate the bias signal. In the amplitude modulation implementation (AM), the oscillating signal is not modulated, but rather causes the switch to gate a reference signal that is substantially equal to or proportional to the information signal. In the FM and PM implementations, the signal that is output from the switch is modulated substantially the same as the modulated oscillating signal. In the AM implementation, the signal that is output from the switch has an amplitude that is a function of the information signal. In both embodiments, the output of the switch is filtered, and the desired harmonic is output. | 12-24-2009 |
20090318107 | DC Offset, Re-Radiation, and I/Q Solutions Using Universal Frequency Translation Technology - Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein. | 12-24-2009 |
20100056084 | Frequency Conversion Based on Gated Information Signal - A method and system is described wherein an information signals is gated at a frequency that is a sub-harmonic of the frequency of the desired output signal. In the modulation embodiments, the information signal is modulated as part of the up-conversion process. In a first modulation embodiment, one information signal is phase modulated onto the carrier signal as part of the up-conversion process. In a second modulation embodiment, two information signals are multiplied, and, as part of the up-conversion process, one signal is phase modulated onto the carrier and the other signal is amplitude modulated onto the carrier. In a third modulation embodiment, one information signal is phase modulated onto the “I” phase of the carrier signal as part of the up-conversion process and a second information signal is phase modulated onto the “Q” phase of the carrier as part of the up-conversion process. In a fourth modulation embodiment, four information signals are phase and amplitude modulated onto the “I” and “Q” phases of the carrier as part of the up-conversion process. There are at least two implementations of each of the aforementioned embodiments. | 03-04-2010 |
20100073085 | Generation and Amplification of Substantially Constant Envelope Signals, Including Switching an Output Among a Plurality of Nodes - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 03-25-2010 |
20100075623 | Systems and Methods of RF Power Transmission, Modulation, and Amplification, Including Embodiments for Controlling a Transimpedance Node - Multiple-Input-Single-Output (MISO) amplification and associated VPA control algorithms are provided herein. According to embodiments of the present invention, MISO amplifiers driven by VPA control algorithms outperform conventional outphasing amplifiers, including cascades of separate branch amplifiers using conventional power combiner technologies. MISO amplifiers can be operated at enhanced efficiencies over the entire output power dynamic range by blending the control of the power source, source impedances, bias levels, outphasing, and branch amplitudes. These blending constituents are combined to provide an optimized transfer characteristic function. | 03-25-2010 |
20100086086 | GAIN CONTROL IN A COMMUNICATION CHANNEL - Methods and apparatuses for reducing DC offsets in a communication system are described. In a first aspect, a feedback loop circuit reduces DC offset in a wireless local area network (WLAN) receiver channel. The frequency response of the feedback loop circuit can be variable. In a second aspect, a circuit provides gain control in a WLAN receiver channel. The stored DC offset is subtracted from the receiver channel. First and second automatic gain control (AGC) amplifiers are coupled in respective portions of the receiver channel. In a third aspect, a feedback loop circuit reduces DC offset in a WLAN receiver channel. The feedback loop circuit includes a storage element that samples and stores receiver channel DC offset. The loop is opened, and the DC offset stored in the storage element is subtracted from the receiver channel. Circuits for monitoring DC offset, and for providing control signals for controlling the frequency response of the DC offset reducing circuits are also provided. | 04-08-2010 |
20100097138 | RF Power Transmission, Modulation, and Amplification Embodiments - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 04-22-2010 |
20100111150 | Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments - Frequency translation and applications of the same are described herein, including RF modem and wireless local area network (WLAN) applications. In embodiments, the WLAN invention includes an antenna, an LNA/PA module, a receiver, a transmitter, a control signal generator, a demodulation/modulation facilitation module, and a MAC interface. The WLAN receiver includes at least one universal frequency translation module that frequency down-converts a received EM signal. In embodiments, the UFT based receiver is configured in a multi-phase embodiment to reduce or eliminate re-radiation that is caused by DC offset. The WLAN transmitter includes at least one universal frequency translation module that frequency up-converts a baseband signal in preparation for transmission over the wireless LAN. In embodiments, the UFT based transmitter is configured in a differential and multi-phase embodiment to reduce carrier insertion and spectral growth. | 05-06-2010 |
20100119010 | Control Modules - A circuit is provided comprising detector circuitry, calculating circuitry, and determining circuitry. The detector circuitry is figured to generate an I data signal magnitude value of a sampled I data signal and a Q data signal magnitude value of a sampled Q data signal. The calculating circuitry is configured to calculate a phase shift angle φ | 05-13-2010 |
20100195757 | Apparatus and method of differential IQ frequency up-conversion - A balanced transmitter up-converts I and Q baseband signals directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the I and Q baseband signals in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the I and Q baseband signals. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal. A bandpass filter can then be utilized to select the desired harmonic of interest from the harmonically rich signal. | 08-05-2010 |
20100260289 | Method, System, and Apparatus for Balanced Frequency Up-Conversion of a Baseband Signal - A balanced transmitter up-converts a baseband signal directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the baseband signal in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the baseband signal. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal. A bandpass filter can then be utilized to select the desired harmonic of interest from the harmonically rich signal. The sampling modules that perform the sampling can be configured in either a series or a shunt configuration. In embodiments of the invention, DC offset voltages are minimized between the sampling modules to minimize or prevent carrier insertion into the harmonic images. | 10-14-2010 |
20100303178 | Method and System for Down-Converting an Electromagnetic Signal, and Transforms for Same - Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc.) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. | 12-02-2010 |
20110006863 | Applications of Universal Frequency Translation - Frequency translation and applications of same are described herein. Such applications include, but are not limited to, frequency down-conversion, frequency up-conversion, enhanced signal reception, unified down-conversion and filtering, and combinations and applications of same. | 01-13-2011 |
20110059715 | Apparatus and Method for Down-Converting Electromagnetic Signals by Controlled Charging and Discharging of a Capacitor - Methods, systems, and apparatuses for down-converting and up-converting an electromagnetic signal. In embodiments, the invention operates by receiving an electromagnetic signal and recursively operating on approximate half cycles of a carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to forme a down-converted signal. In embodiments, up-conversion is accomplished by controlling a switch with an oscillating signal, the frequency of the oscillating signal being selected as a sub-harmonic of the desired output frequency. When the invention is being used in the frequency modulation or phase modulation implementations, the oscillating signal is modulated by an information signal before it causes the switch to gate a bias signal. The output of the switch is filtered, and the desired harmonic is output. | 03-10-2011 |
20110092177 | Down-Conversion of an Electromagnetic Signal with Feedback Control - Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein. | 04-21-2011 |
20110151821 | Methods and Systems for Down-Converting a Signal Using a Complementary Transistor Structure - Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal are described herein. Briefly stated, such methods, systems, and apparatuses operate by receiving an EM signal and an aliasing signal having an aliasing rate. The EM signal is aliased according to the aliasing signal to down-convert the EM signal. The term aliasing, as used herein, refers to both down-converting an EM signal by under-sampling the EM signal at an aliasing rate, and down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a demodulated baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. | 06-23-2011 |
20110193630 | Systems and Methods of RF Power Transmission, Modulation, and Amplification, Including Blended Control Embodiments - Embodiments of the present invention enable a blended control approach to generate a desired output waveform in an outphasing-based system. Embodiments of blended control according to the present invention combine outphasing with bias and/or amplitude control to yield an accurate, practical, and producible system with substantially comparable performance to that of a theoretical ideal outphasing system, but without the isolation and accuracy requirements of outphasing alone. | 08-11-2011 |
20110194648 | Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments - Frequency translation and applications of the same are described herein, including RF modem and wireless local area network (WLAN) applications. In embodiments, the WLAN invention includes an antenna, an LNA/PA module, a receiver, a transmitter, a control signal generator, a demodulation/modulation facilitation module, and a MAC interface. The WLAN receiver includes at least one universal frequency translation module that frequency down-converts a received EM signal. In embodiments, the UFT based receiver is configured in a multi-phase embodiment to reduce or eliminate re-radiation that is caused by DC offset. The WLAN transmitter includes at least one universal frequency translation module that frequency up-converts a baseband signal in preparation for transmission over the wireless LAN. In embodiments, the UFT based transmitter is configured in a differential and multi-phase embodiment to reduce carrier insertion and spectral growth. | 08-11-2011 |
20110255578 | Method and System for Frequency Down-Conversion and Frequency Up-Conversion - A method and system is described wherein a signal with a lower frequency is up-converted to a higher frequency. In one embodiment, the higher frequency signal is used as a stable frequency and phase reference. In another embodiment, the invention is used as a transmitter. The up-conversion is accomplished by controlling a switch with an oscillating signal, the frequency of the oscillating signal being selected as a sub-harmonic of the desired output frequency. When the invention is being used as a frequency or phase reference, the oscillating signal is not modulated, and controls a switch that is connected to a bias signal. When the invention is being used in the frequency modulation (FM) or phase modulation (PM) implementations, the oscillating signal is modulated by an information signal before it causes the switch to gate the bias signal. In the amplitude modulation implementation (AM), the oscillating signal is not modulated, but rather causes the switch to gate a reference signal that is substantially equal to or proportional to the information signal. In the FM and PM implementations, the signal that is output from the switch is modulated substantially the same as the modulated oscillating signal. In the AM implementation, the signal that is output from the switch has an amplitude that is a function of the information signal. In both embodiments, the output of the switch is filtered, and the desired harmonic is output. | 10-20-2011 |
20120025906 | Systems and Methods of RF Power Transmission, Modulation, and Amplification, Including Embodiments for Compensating for Waveform Distortion - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 02-02-2012 |
20120105154 | Switching Power Supply - Methods and systems for enhancing system efficiency in a power amplification, modulation, and transmission system are provided. Embodiments include determining output power characteristics of a selected modulation scheme to be employed in data transmission, determining a most probable output power point of operation for the selected modulation scheme based on the output power characteristics, and controlling the output stage power supply of the system to operate at substantially optimal efficiency at the most probable output power point of operation. | 05-03-2012 |
20120114078 | Method, System and Apparatus for Balanced Frequency Up-Conversion of a Baseband Signal - A balanced transmitter up-converts a baseband signal directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the baseband signal in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the baseband signal. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal. A bandpass filter can then be utilized to select the desired harmonic of interest from the harmonically rich signal. The sampling modules that perform the sampling can be configured in either a series or a shunt configuration. In embodiments of the invention, DC offset voltages are minimized between the sampling modules to minimize or prevent carrier insertion into the harmonic images. | 05-10-2012 |
20120178398 | APPLICATIONS OF UNIVERSAL FREQUENCY TRANSLATION - Frequency translation and applications of same are described herein. Such applications include, but are not limited to, frequency down-conversion, frequency up-conversion, enhanced signal reception, unified down-conversion and filtering, and combinations and applications of same. | 07-12-2012 |
20120243637 | Power Amplification Based on Phase Angle Controlled Frequency Reference Signal and Amplitude Control Signal - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 09-27-2012 |
20120243643 | APPARATUS AND METHOD OF DIFFERENTIAL IQ FREQUENCY UP-CONVERSION - A balanced transmitter up-converts I and Q baseband signals directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the I and Q baseband signals in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains necessary information to reconstruct the I and Q baseband signals. The differential sampling is performed according to control signals that are phase shifted with respect to each other. The control signals may have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal. A bandpass filter can then be utilized to select the desired harmonic of interest from the harmonically rich signal. | 09-27-2012 |
20120256684 | Power Amplification Based on Frequency Control Signal - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals is individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 10-11-2012 |
20120293252 | Systems and Methods of RF Power Transmission, Modulation, and Amplification, Including Varying Weights of Control Signals - Embodiments of the present invention include a method and system for control of a multiple-input-single output (MISO) device. For example, the method includes determining a change in power output level from a first power output level to a second power output level of the MISO device. The method also includes varying one or more weights associated with respective one or more controls of the MISO device to cause the change in power output. The one or more controls can include one or more of (a) a phase control of one or more input signals to the MISO device, (b) a bias control of the MISO device, and (c) an amplitude control of the input signals to the MISO device | 11-22-2012 |
20120313713 | Switching Power Supply - A power supply is disclosed herein. For example, the power supply can include a switching device and an aperture generator and control module. The switching device can be configured to down-convert an input voltage and pass the down-converted input voltage to an output voltage node. The aperture generator and control module can be configured to control the switching device. In response to a power efficiency of the power supply exceeding a predetermined threshold, the aperture generator and control module can deactivate the switching device and pass the input voltage to the output voltage node. | 12-13-2012 |
20120319769 | COMBINER-LESS MULTIPLE INPUT SINGLE OUTPUT (MISO) AMPLIFICATION WITH BLENDED CONTROL - Multiple-Input-Single-Output (MISO) amplification and associated VPA control algorithms are provided herein. According to embodiments of the present invention, MISO amplifiers driven by VPA control algorithms outperform conventional outphasing amplifiers, including cascades of separate branch amplifiers using conventional power combiner technologies. MISO amplifiers can be operated at enhanced efficiencies over the entire output power dynamic range by blending the control of the power source, source impedances, bias levels, outphasing, and branch amplitudes. These blending constituents are combined to provide an optimized transfer characteristic function. | 12-20-2012 |
20130027128 | Systems and Methods of RF Power Transmission, Modulation, and Amplification - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 01-31-2013 |
20130031442 | Multi-Dimensional Error Definition, Error Measurement, Error Analysis, Error Function Generation, Error Information Optimization, and Error Correction for Communications Systems - The present invention is related to multi-dimensional error definition, error measurement, error analysis, error function generation, error information optimization, and error correction for communication systems. Novel techniques are provided that can be applied to a myriad of applications for which an input to output transfer characteristic must be corrected or linearized. According to embodiments of the present invention, error can be described, processed, and geometrically interpreted. Compact formulations of error correction and calibration functions can be generated according to the present invention, which reduce memory requirements as well as computational time. | 01-31-2013 |
20130033313 | RF Power Transmission, Modulation, and Amplification Embodiments - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 02-07-2013 |
20130038389 | Systems and Methods of RF Power Transmission, Modulation, and Amplification, Including Embodiments for Compensating for Waveform Distortion - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 02-14-2013 |
20130077708 | Antenna Control - An energy converter based transmitter, a method, a multi-element antenna array are provided for a radio frequency (RF) transmission. For example, the energy converter based transmitter can include a control circuit, a multiple input single output (MISO) operator, and an antenna. The control circuit is configured to receive input information and generate amplitude control signals and phase control signals. The MISO operator is configured to receive the amplitude control signals and the phase control signals and to generate an RF output signal. Further, the antenna is configured to receive and transmit the RF output signal. | 03-28-2013 |
20130109338 | Apparatus, System, and Method for Down Converting and Up-Converting Electromagnetic Signals | 05-02-2013 |
20130120064 | Systems and Methods of RF Power Transmissions, Modulation, and Amplification, Including Cartesian 4-Branch Embodiments - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 05-16-2013 |
20130129019 | RF Power Transmission, Modulation, and Amplification, Including Direct Cartesian 2-Branch Embodiments - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 05-23-2013 |
20130182749 | UNIVERSAL PLATFORM MODULE FOR A PLURALITY OF COMMUNICATION PROTOCOLS - A communication system comprising a multi-protocol, multi-bearer sub-system is described herein. The sub-system is a universal platform module that can transmit and receive one or more information signals in one or more protocols using one or more bearer services. In one embodiment, the sub-system may form a portion of a transceiver that is composed of a transmitter and a receiver, and which is a gateway server between a personal area network (PAN) and the global wireless network. | 07-18-2013 |
20130202070 | APPLICATIONS OF UNIVERSAL FREQUENCY TRANSLATION - Frequency translation and applications of same are described herein. Such applications include, but are not limited to, frequency down-conversion, frequency up-conversion, enhanced signal reception, unified down-conversion and filtering, and combinations and applications of same. | 08-08-2013 |
20130244605 | CONTROL OF MISO NODE - Multiple-Input-Single-Output (MISO) devices and associated VPA control algorithms are provided herein. For example, a method includes receiving a plurality of control signals. The method also generates a plurality of substantially constant envelope signals from the plurality of control signals and a reference signal. The method combines the plurality of substantially constant envelope signals at a multiple input single output (MISO) node to generate a desired waveform. Further, the method controls the desired waveform at the MISO node based on a signal constellation corresponding to the plurality of control signals. | 09-19-2013 |
20130288620 | Systems and Methods of Amplification including Multiple Input Single Output (MISO) Amplifiers - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 10-31-2013 |
20130328624 | SYSTEMS, AND METHODS OF RF POWER TRANSMISSION, MODULATION, AND AMPLIFICATION, INCLUDING EMBODIMENTS FOR OUTPUT STAGE PROTECTION - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 12-12-2013 |
20140062574 | CONTROLLING OUTPUT POWER OF MULTIPLE-INPUT SINGLE-OUTPUT (MISO) DEVICE - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 03-06-2014 |
20140187184 | RF Power Transmission, Modulation, and Amplification Embodiments - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 07-03-2014 |
20140233670 | Apparatus and Method of Differential IQ Frequency Up-Conversion - A balanced transmitter up-converts I and Q baseband signals directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the I and Q baseband signals in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the I and Q baseband signals. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal. A bandpass filter can then be utilized to select the desired harmonic of interest from the harmonically rich signal. | 08-21-2014 |
20140307760 | Universal Platform Module for a Plurality of Communication Protocols - A communication system comprising a multi-protocol, multi-bearer sub-system is described herein. The sub-system is a universal platform module that can transmit and receive one or more information signals in one or more protocols using one or more bearer services. In one embodiment, the sub-system may form a portion of a transceiver that is composed of a transmitter and a receiver, and which is a gateway server between a personal area network (PAN) and the global wireless network. | 10-16-2014 |
20140308909 | Up-Conversion Based on Gated Information Signal - A method and system is described wherein an information signal is gated at a frequency that is a sub-harmonic of the frequency of the desired output signal. In the modulation embodiments, the information signal is modulated as part of the up-conversion process. In a first modulation embodiment, one information signal is phase modulated onto the carrier signal as part of the up-conversion process. In a second modulation embodiment, two information signals are multiplied, and, as part of the up-conversion process, one signal is phase modulated onto the carrier and the other signal is amplitude modulated onto the carrier. In a third modulation embodiment, one information signal is phase modulated onto the “I” phase of the carrier signal as part of the up-conversion process and a second information signal is phase modulated onto the “Q” phase of the carrier as part of the up-conversion process. | 10-16-2014 |
20140308911 | Apparatus, System, and Method for Down-Converting and Up-Converting Electromagnetic Signals - Methods, systems, and apparatuses for down-converting and up-converting an electromagnetic signal. In embodiments, the invention operates by receiving an electromagnetic signal and recursively operating on approximate half cycles of a carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In embodiments, up-conversion is accomplished by controlling a switch with an oscillating signal, the frequency of the oscillating signal being selected as a sub-harmonic of the desired output frequency. When the invention is being used in the frequency modulation or phase modulation implementations, the oscillating signal is modulated by an information signal before it causes the switch to gate a bias signal. The output of the switch is filtered, and the desired harmonic is output. | 10-16-2014 |
20140308912 | Methods and Systems for Down-Converting a Signal Using a Complementary Transistor Structure - Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal is described herein. Briefly stated, such methods, systems, and apparatuses operate by receiving an EM signal and an aliasing signal having an aliasing rate. The EM signal is aliased according to the aliasing signal to down-convert the EM signal. The term aliasing, as used herein, refers to both down-converting an EM signal by under-sampling the EM signal at an aliasing rate, and down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a demodulated baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. | 10-16-2014 |
20140315503 | MULTIPLE INPUT SINGLE OUTPUT DEVICE WITH VECTOR SIGNAL AND BIAS SIGNAL INPUTS - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 10-23-2014 |
20140327484 | SYSTEMS AND METHODS OF RF POWER TRANSMISSION, MODULATION, AND AMPLIFICATION, INCLUDING CONTROL FUNCTIONS TO TRANSITION AN OUTPUT OF A MISO DEVICE - Embodiments of the present invention include a method and system for control of a multiple-input-single output (MISO) device. For example, the method includes partitioning a waveform constellation space into a plurality of regions, where each region of the plurality of regions is associated with one or more control functions of the MISO device. The method also includes transitioning the MISO device between a plurality of classes of operation based on the one or more control functions. | 11-06-2014 |
20140375383 | SWITCHING POWER SUPPLY - A power supply is disclosed herein. For example, a method for controlling the power supply can include dynamically programming a threshold voltage. The method can also include down-converting an input voltage to generate a down converted voltage at an output voltage node. Further, the method can include passing the input voltage to the output voltage node when a supply voltage exceeds the threshold voltage. | 12-25-2014 |
20150080063 | METHOD, APPARATUS AND SYSTEM FOR RENDERING AN INFORMATION BEARING FUNCTION OF TIME - An embodiment of the present invention is directed to a method for partitioning an energy or power source. The energy source may be, for example, a battery or batteries or other power supply or power supplies for an electronic device, such as a cell phone, or mobile device. The energy source (battery for example), or power supply, provides power to a cell phone, or mobile device or any other load or power consuming device. Partitioning this energy source is a technique for controlling its operation so that power is provided to the power consuming device, such as a cell phone more efficiently, thereby extending the length of time the phone can be used between re-charging. | 03-19-2015 |
20150084700 | Systems and Methods of RF Power Transmission, Modulation and Amplification - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 03-26-2015 |
20150087251 | RF Power Transmission, Modulation, and Amplification, Including Direct Cartesian 2-Branch Embodiments - Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion. | 03-26-2015 |