Patent application number | Description | Published |
20120234798 | CLADDING APPLICATION METHOD AND APPARATUS USING HYBRID LASER PROCESS - Disclosed is a method for affixing a metal cladding to a metal base. The method includes: heating the metal cladding and a surface of the metal base with a heating device to create a molten metal pool having molten metal cladding layered upon molten metal base material in the metal base; stabilizing a temperature gradient of the molten metal pool with a laser beam directed into the molten metal pool; and cooling the molten metal pool to affix solidified cladding to the metal base. | 09-20-2012 |
20130071250 | PROCESS OF WELDING A TURBINE BLADE, A PROCESS OF WELDING A NON-UNIFORM ARTICLE, AND A WELDED TURBINE BLADE - A process of welding an article and a welded turbine blade are disclosed. The process includes fusion welding over a primary symmetry line determined from a center of gravity on a first side of the article or blade and fusion welding over the primary symmetry line determined from the center of gravity on a second side of the article or blade. The fusion treating includes multiple fusion treatments. | 03-21-2013 |
20130086785 | HYBRID REPAIR PLUGS AND REPAIR METHODS INCORPORATING THE SAME - Hybrid repair plugs include an alloy core and a sintered preform shell at least partially surrounding the alloy core, wherein the sintered preform shell includes a mixture comprising a base alloy comprising about 30 weight percent to about 90 weight percent of the mixture and a second alloy including a sufficient amount of a melting point depressant to have a lower melting temperature than the base alloy. | 04-11-2013 |
20130095342 | BRAZING PROCESS, BRAZE ASSEMBLY, AND BRAZED ARTICLE - A brazing process, a braze assembly, and a brazed article are disclosed. The brazing process includes applying a braze material to an article within a vacuum chamber while the vacuum chamber is substantially evacuated. The braze assembly is capable of applying a braze material to an article within a vacuum chamber while the vacuum chamber is substantially evacuated. The brazed article is devoid of re-formed oxides. | 04-18-2013 |
20130136940 | WELDING SYSTEM, WELDING PROCESS, AND WELDED ARTICLE - A welding system, welding process and welded article are disclosed. The system includes a laser welding apparatus, a GMAW apparatus, and a GTAW apparatus. The laser welding apparatus, the GMAW apparatus, and the GTAW apparatus are positioned to weld an article along a weld path. The process includes providing a welding system having a laser welding apparatus, a GMAW apparatus, and a GTAW apparatus. The process further includes welding an article with one or more of the laser welding apparatus, the GMAW apparatus, and the GTAW apparatus. The welded article includes a weld formed by welding from a GMAW apparatus, a laser welding apparatus, and a GTAW apparatus. | 05-30-2013 |
20130283798 | COMBUSTOR AND A METHOD FOR ASSEMBLING THE COMBUSTOR - A combustor generally includes a plate that extends radially and circumferentially within at least a portion of the combustor. The combustor may also include a shroud that at least partially surrounds the plate and a plurality of tubes that extend through the plate. One or more flexible couplings may at least partially surround at least some of the plurality of tubes and the one or more flexible couplings may be connected to the plate. | 10-31-2013 |
20130287546 | TURBINE SHROUD COOLING ASSEMBLY FOR A GAS TURBINE SYSTEM - A turbine shroud cooling assembly for a gas turbine system includes an outer shroud component disposed within a turbine section of the gas turbine system and proximate a turbine section casing, wherein the outer shroud component includes at least one airway for ingesting an airstream. Also included is an inner shroud component disposed radially inward of, and fixedly connected to, the outer shroud component, wherein the inner shroud component includes a plurality of microchannels extending in at least one of a circumferential direction and an axial direction for cooling the inner shroud component with the airstream from the at least one airway. | 10-31-2013 |
20130336800 | CHANNEL MARKER AND RELATED METHODS - Various embodiments of the disclosure include a component, methods of forming components, and methods of cooling components. In some embodiments, a component is disclosed including: a body; a microchannel extending through a portion of the body; a thermal barrier coating (TBC) covering a portion of the microchannel; and a marker member extending from the microchannel through the TBC or from an end of the microchannel, the marker member indicating a location of the microchannel in the body. | 12-19-2013 |
20140017415 | COATING/REPAIRING PROCESS USING ELECTROSPARK WITH PSP ROD - An electrospark deposition electrode and an associated method for depositing coatings using the electrode are provided. The electrode includes a powder of a first metal and a powder of a second metal. The second metal is a braze alloy including nickel, the second metal having a lower melting point than the first metal. The powder of the first metal and the powder of the second metal are sintered together to form the electrode so that the powders are comingled but not combined within the electrode. The method includes depositing a layer of the first metal onto the substrate using an electrospark deposition process. | 01-16-2014 |
20140061171 | HYBRID WELDING APPARATUSES, SYSTEMS AND METHODS - Hybrid welding apparatuses include a laser that produces a leading laser beam, and, an arc welder that produces a trailing backhand weld arc, wherein the leading laser beam and the trailing backhand weld arc are directed towards a common molten pool, and wherein the trailing backhand weld arc trails the leading laser beam as the leading laser beam progresses in a weld direction. | 03-06-2014 |
20140126995 | MICROCHANNEL COOLED TURBINE COMPONENT AND METHOD OF FORMING A MICROCHANNEL COOLED TURBINE COMPONENT - A microchannel cooled turbine component includes a first portion of the microchannel cooled turbine component having a substrate surface. Also included is a second portion of the microchannel cooled turbine component comprising a substance that is laser fused on the substrate surface. Further included is at least one microchannel extending along at least one of the first portion and the second portion, the at least one microchannel formed and enclosed upon formation of the second portion. | 05-08-2014 |
20140170433 | COMPONENTS WITH NEAR-SURFACE COOLING MICROCHANNELS AND METHODS FOR PROVIDING THE SAME - Methods for providing a near-surface cooling microchannel in a component include forming a near-surface cooling microchannel in a first surface of a pre-sintered preform, disposing the first surface of the pre-sintered preform onto an outer surface of the base article such that an opening of the outer surface of the base article is aligned with the near-surface cooling microchannel in the first surface of the pre-sintered preform, and, heating the pre-sintered preform to bond it to the base article, wherein the opening of the outer surface of the base article remains aligned with the near-surface cooling microchannel in the first surface of the pre-sintered preform. | 06-19-2014 |
20140212208 | BRAZING PROCESS AND PLATE ASSEMBLY - A brazing process and plate assembly are disclosed. The brazing process includes positioning a braze foil on a first workpiece, then securing the braze foil to the first workpiece to form a brazable component, then positioning a second workpiece proximal to the brazable component, and then brazing the second workpiece to the brazable component. Additionally or alternatively, the brazing process includes positioning the braze foil on a tube, then securing the braze foil to the tube to form a brazable tube, then positioning a plate of a plate assembly proximal to the brazable tube, and then brazing the plate to the brazable tube. The plate assembly includes a plate and a tube brazed to the plate by a braze foil secured to the tube. | 07-31-2014 |
20140212628 | MULTILAYER COMPONENT AND FABRICATION PROCESS - A multilayer component and fabrication process are disclosed. The multilayer component includes a foil surface layer abutting the bond coat layer and a channel-forming material positioned between the foil surface layer and a substrate. The channel-forming material defines at least a portion of a channel. The channel can be at least partially defined by a channel-forming material brazed with a foil surface layer to a substrate of the multilayer component. The process includes applying one or more layers to a foil surface layer and applying a channel-forming material to at least partially define a channel between the foil surface layer and a substrate. | 07-31-2014 |
20140212681 | JOINING PROCESS AND JOINED ARTICLE - A joining process and a joined article are disclosed. The joining process includes positioning an article having a base material, and friction welding a pre-sintered preform to the base material. The pre-sintered preform forms a feature on the article. The joined article includes a feature joined to a base material by friction welding of a pre-sintered preform. | 07-31-2014 |
20140219780 | COOLING STRUCTURE FOR TURBOMACHINE - A cooling structure for a turbomachine. In one embodiment, the cooling structure is for a seal slot of the turbomachine. The cooling structure includes a body coupled to a surface of the seal slot. The body includes a passageway on a first surface of the body for providing a cooling fluid to the seal slot. In an other embodiment, a apparatus includes a first component and a second component adjacent the first component. The apparatus also includes a seal slot extending between the first component and the second component, and a cooling structure positioned within the seal slot. The cooling structure includes a body coupled to a surface of the seal slot. The body has a passageway on a first surface of the body for providing a cooling fluid to the seal slot. | 08-07-2014 |
20140220376 | BRAZING PROCESS, BRAZE ARRANGEMENT, AND BRAZED ARTICLE - A brazing process, a braze arrangement, and a brazed article are disclosed. The brazing process includes brazing an article with a braze arrangement. The braze arrangement includes a first braze material and a second braze material, the first braze material having a first melting point and the second braze material having a second melting point, the first melting point differing from the second melting point. The brazed article includes a treatment region, a first brazed material positioned within the treatment region, and a second brazed material positioned distal from the article in comparison to the first brazed material. The first brazed material is formed by the first braze material and the second brazed material is formed by the second braze material. | 08-07-2014 |
20140237784 | METHOD OF FORMING A MICROCHANNEL COOLED COMPONENT - A method of forming a microchannel cooled component is provided. The method includes forming at least one microchannel within a surface of a relatively planar plate. The method also includes placing a relatively planar cover member over the surface having the at least one microchannel formed therein. The method further includes adhering the relatively planar cover member to the relatively planar plate. The method yet further includes curving the microchannel cooled component by pressing the relatively planar cover member with a forming component for at least a portion of a time period of adhering the relatively planar cover member to the relatively planar plate. | 08-28-2014 |
20140252198 | SUPPORT STRUCTURE WITH DISSIMILAR METAL WELDS - A support structure for a gas turbine exhaust system having an exterior shell, an interior liner, and insulation therebetween, the support structure including a support bar welded to the exterior shell, wherein the support bar weld includes a first filler material including a carbon steel filler material. The support structure further including a stud welded to the support bar and coupled to the interior liner, wherein the stud weld includes a second filler material including a low percentage of chromium. | 09-11-2014 |
20140260327 | COOLED ARTICLE - The present invention is an article containing internal cooling channels located near at least one surface. In an embodiment, the cooled article includes a base material, a first layer, and a second layer. Here, the first layer is bonded to the base material and the second layer is bonded to the first layer, wherein at least one closed cooling channel is disposed within a portion of the first layer and a portion of the second layer. | 09-18-2014 |
20140369741 | JOINING PROCESS AND JOINED ARTICLE - A joining process and a joined article are disclosed. The joining process includes positioning an article having a base material, and friction joining a pre-sintered preform to the base material. The pre-sintered preform forms a feature on the article. The joined article includes a feature joined to a base material by friction joining of a pre-sintered preform. | 12-18-2014 |
20150017018 | TURBINE COMPONENT AND METHODS OF ASSEMBLING THE SAME - A turbine component is provided. The turbine component includes an airfoil having a first surface and a second surface. A thermal barrier coating is coupled to the second surface, wherein the thermal barrier coating includes a first portion, a second portion and a trench defined between the first and second portions. A channel is coupled in flow communication to the first surface and the trench, wherein the channel includes a first sidewall and a second sidewall opposite of the first sidewall. The first and second sidewalls extend from the first surface and toward the trench at an angle. The turbine component includes a cover coupled to the second surface, wherein the cover includes a first end coupled to the first portion and a second end extending into the trench and spaced from the second portion. | 01-15-2015 |
20150030460 | METHODS FOR MODIFYING COOLING HOLES WITH RECESS-SHAPED MODIFICATIONS AND COMPONENTS INCORPORATING THE SAME - Methods for modifying a plurality of cooling holes of a component include disposing a recess-shaped modification in a recess of the component comprising a plurality of cooling hole outlets, wherein the recess-shaped modification is formed to substantially fill the recess and comprising a plurality of modified cooling holes passing there through. The method further includes aligning the plurality of modified cooling holes of the recess-shaped modification with the plurality of cooling hole outlets of the component, and, bonding the recess-shaped modification disposed in the recess to the component, wherein the plurality of modified cooling holes of the recess-shaped modification is fluidly connected with the plurality of cooling holes of the component. | 01-29-2015 |
20150041590 | AIRFOIL WITH A TRAILING EDGE SUPPLEMENT STRUCTURE - An airfoil includes a main portion formed of a base material and having an inner core comprising a hollow region. Also included is a trailing edge region of the main portion. Further included is a trailing edge supplement structure comprising a low-melt superalloy operatively coupled to the base material proximate the trailing edge region. Yet further included is at least one cooling passage fluidly coupling the inner core of the main portion to an inner region of the trailing edge region. Also included is a trailing edge region exhaust path disposed in the inner region and configured to route a cooling airflow in a span-wise direction of the airfoil. | 02-12-2015 |
20150064019 | Gas Turbine Components with Porous Cooling Features - The present application provides a hot gas path component for use with a gas turbine engine. The hot gas path component may include an airfoil, an internal cooling cavity, and a porous section created by a direct metal laser melting technique. The porous section may be built into the airfoil or the airfoil may be built separately and attached to the airfoil. | 03-05-2015 |
20150068629 | THREE-DIMENSIONAL PRINTING PROCESS, SWIRLING DEVICE AND THERMAL MANAGEMENT PROCESS - A three-dimensional printing process, a swirling device, and a thermal management process are disclosed. The three-dimensional printing process includes distributing a material to a selected region, selectively laser melting the material, and forming a swirling device from the material. The swirling device is printed by selective laser melting. The thermal management process includes providing an article having a swirling device printed by selective laser melting, and cooling a portion of the article by transporting air through the swirling device. | 03-12-2015 |
20150086408 | METHOD OF MANUFACTURING A COMPONENT AND THERMAL MANAGEMENT PROCESS - A method of manufacturing a component and a method of thermal management are provided. The methods include forming at least one portion of the component, printing a cooling member of the component and attaching the at least one portion to the cooling member of the component. The cooling member includes at least one cooling feature. The at least one cooling feature includes at least one cooling channel adjacent to a surface of the component, wherein printing allows for near-net shape geometry of the cooling member with the at least one cooling channel being located within a range of about 127 (0.005 inches) to about 762 micrometers (0.030 inches) from the surface of the component. The method of thermal management also includes transporting a fluid through at least one fluid pathway defined by the at least one cooling channel within the component to cool the component. | 03-26-2015 |