Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Dale A. Mcneill, Encinitas US

Dale A. Mcneill, Encinitas, CA US

Patent application numberDescriptionPublished
20080218853Micro-structure based screen system for use in rear projection array display systems - The viewing angle brightness sensitivity typically encountered in tiled rear projection display systems cannot be solely overcome by edge blending and calibration techniques. The rear projection array display-screen system of this invention, being comprised of a micro-structure array screen combined with a conventional diffusion screen, overcomes this viewing angle brightness sensitivity in both linear as well as matrix tiled rear projection display systems including those that use wide field-of-view projectors. The latter capability enables low form-factor and compact packaging of tiled rear projection display systems.09-11-2008
20090086170Quantum Photonic Imagers and Methods of Fabrication Thereof - Emissive quantum photonic imagers comprised of a spatial array of digitally addressable multicolor pixels. Each pixel is a vertical stack of multiple semiconductor laser diodes, each of which can generate laser light of a different color. Within each multicolor pixel, the light generated from the stack of diodes is emitted perpendicular to the plane of the imager device via a plurality of vertical waveguides that are coupled to the optical confinement regions of each of the multiple laser diodes comprising the imager device. Each of the laser diodes comprising a single pixel is individually addressable, enabling each pixel to simultaneously emit any combination of the colors associated with the laser diodes at any required on/off duty cycle for each color. Each individual multicolor pixel can simultaneously emit the required colors and brightness values by controlling the on/off duty cycles of their respective laser diodes.04-02-2009
20090278998Quantum Photonic Imagers and Methods of Fabrication Thereof - Emissive quantum photonic imagers comprised of a spatial array of digitally addressable multicolor pixels. Each pixel is a vertical stack of multiple semiconductor laser diodes, each of which can generate laser light of a different color. Within each multicolor pixel, the light generated from the stack of diodes is emitted perpendicular to the plane of the imager device via a plurality of vertical waveguides that are coupled to the optical confinement regions of each of the multiple laser diodes comprising the imager device. Each of the laser diodes comprising a single pixel is individually addressable, enabling each pixel to simultaneously emit any combination of the colors associated with the laser diodes at any required on/off duty cycle for each color. Each individual multicolor pixel can simultaneously emit the required colors and brightness values by controlling the on/off duty cycles of their respective laser diodes.11-12-2009
20100003777Quantum Photonic Imagers and Methods of Fabrication Thereof - Emissive quantum photonic imagers comprised of a spatial array of digitally addressable multicolor pixels. Each pixel is a vertical stack of multiple semiconductor laser diodes, each of which can generate laser light of a different color. Within each multicolor pixel, the light generated from the stack of diodes is emitted perpendicular to the plane of the imager device via a plurality of vertical waveguides that are coupled to the optical confinement regions of each of the multiple laser diodes comprising the imager device. Each of the laser diodes comprising a single pixel is individually addressable, enabling each pixel to simultaneously emit any combination of the colors associated with the laser diodes at any required on/off duty cycle for each color. Each individual multicolor pixel can simultaneously emit the required colors and brightness values by controlling the on/off duty cycles of their respective laser diodes.01-07-2010
20100066921Quantum Photonic Imagers and Methods of Fabrication Thereof - Emissive quantum photonic imagers comprised of a spatial array of digitally addressable multicolor pixels. Each pixel is a vertical stack of multiple semiconductor laser diodes, each of which can generate laser light of a different color. Within each multicolor pixel, the light generated from the stack of diodes is emitted perpendicular to the plane of the imager device via a plurality of vertical waveguides that are coupled to the optical confinement regions of each of the multiple laser diodes comprising the imager device. Each of the laser diodes comprising a single pixel is individually addressable, enabling each pixel to simultaneously emit any combination of the colors associated with the laser diodes at any required on/off duty cycle for each color. Each individual multicolor pixel can simultaneously emit the required colors and brightness values by controlling the on/off duty cycles of their respective laser diodes.03-18-2010
20100220042Quantum Photonic Imagers and Methods of Fabrication Thereof - Emissive quantum photonic imagers comprised of a spatial array of digitally addressable multicolor pixels. Each pixel is a vertical stack of multiple semiconductor laser diodes, each of which can generate laser light of a different color. Within each multicolor pixel, the light generated from the stack of diodes is emitted perpendicular to the plane of the imager device via a plurality of vertical waveguides that are coupled to the optical confinement regions of each of the multiple laser diodes comprising the imager device. Each of the laser diodes comprising a single pixel is individually addressable, enabling each pixel to simultaneously emit any combination of the colors associated with the laser diodes at any required on/off duty cycle for each color. Each individual multicolor pixel can simultaneously emit the required colors and brightness values by controlling the on/off duty cycles of their respective laser diodes.09-02-2010
20120006408Alternating Bias Hot Carrier Solar Cells - Designs of extremely high efficiency solar cells are described. A novel alternating bias scheme enhances the photovoltaic power extraction capability above the cell band-gap by enabling the extraction of hot carriers. When applied in conventional solar cells, this alternating bias scheme has the potential of more than doubling their yielded net efficiency. When applied in conjunction with solar cells incorporating quantum wells (QWs) or quantum dots (QDs) based solar cells, the described alternating bias scheme has the potential of extending such solar cell power extraction coverage, possibly across the entire solar spectrum, thus enabling unprecedented solar power extraction efficiency. Within such cells, a novel alternating bias scheme extends the cell energy conversion capability above the cell material band-gap while the quantum confinement structures are used to extend the cell energy conversion capability below the cell band-gap. Light confinement cavities are incorporated into the cell structure in order to allow the absorption of the cell internal photo emission, thus further enhancing the cell efficiency.01-12-2012
20120033113Quantum Photonic Imagers and Methods of Fabrication Thereof - Emissive quantum photonic imagers comprised of a spatial array of digitally addressable multicolor pixels. Each pixel is a vertical stack of multiple semiconductor laser diodes, each of which can generate laser light of a different color. Within each multicolor pixel, the light generated from the stack of diodes is emitted perpendicular to the plane of the imager device via a plurality of vertical waveguides that are coupled to the optical confinement regions of each of the multiple laser diodes comprising the imager device. Each of the laser diodes comprising a single pixel is individually addressable, enabling each pixel to simultaneously emit any combination of the colors associated with the laser diodes at any required on/off duty cycle for each color. Each individual multicolor pixel can simultaneously emit the required colors and brightness values by controlling the on/off duty cycles of their respective laser diodes.02-09-2012
20120073657Alternating Bias Hot Carrier Solar Cells - Extremely high efficiency solar cells are described. Novel alternating bias schemes enhance the photovoltaic power extraction capability above the cell band-gap by enabling the extraction of hot carriers. In conventional solar cells, this alternating bias scheme has the potential of more than doubling their yielded net efficiency. In solar cells incorporating quantum wells (QWs) or quantum dots (QDs), the alternating bias scheme has the potential of extending such solar cell power extraction coverage, possibly across the entire solar spectrum, thus enabling unprecedented solar power extraction efficiency. Within such cells, a novel alternating bias scheme extends the cell energy conversion capability above the cell material band-gap while the quantum confinement structures are used to extend the cell energy conversion capability below the cell band-gap. Light confinement cavities are incorporated into the cell structure to allow the absorption of the cell internal photo emission, thus further enhancing the cell efficiency.03-29-2012
20130141895Spatio-Optical Directional Light Modulator - A novel spatio-optical directional light modulator with no moving parts is introduced. This directional light modulator can be used to create 2D/3D switchable displays of various sizes for mobile to large screen TV. The inherently fast modulation capability of this new directional light modulator increases the achievable viewing angle, resolution, and realism of the 3D image created by the display.06-06-2013
20130258451Spatio-Temporal Directional Light Modulator - A spatio-temporal directional light modulator is introduced. This directional light modulator can be used to create 3D displays, ultra-high resolution 2D displays or 2D/3D switchable displays with extended viewing angle. The spatio-temporal aspects of this novel light modulator allow it to modulate the intensity, color and direction of the light it emits within an wide viewing angle. The inherently fast modulation and wide angular coverage capabilities of this directional light modulator increase the achievable viewing angle, and directional resolution making the 3D images created by the display be more realistic or alternatively the 2D images created by the display having ultra high resolution.10-03-2013
20130321581Spatio-Temporal Light Field Cameras - Spatio-temporal light field cameras that can be used to capture the light field within its spatio temporally extended angular extent. Such cameras can be used to record 3D images, 2D images that can be computationally focused, or wide angle panoramic 2D images with relatively high spatial and directional resolutions. The light field cameras can be also be used as 2D/3D switchable cameras with extended angular extent. The spatio-temporal aspects of the novel light field cameras allow them to capture and digitally record the intensity and color from multiple directional views within a wide angle. The inherent volumetric compactness of the light field cameras make it possible to embed in small mobile devices to capture either 3D images or computationally focusable 2D images. The inherent versatility of these light field cameras makes them suitable for multiple perspective light field capture for 3D movies and video recording applications.12-05-2013
20140083492Alternating Bias Hot Carrier Solar Cells - Designs of extremely high efficiency solar cells are described. A novel alternating bias scheme enhances the photovoltaic power extraction capability above the cell band-gap by enabling the extraction of hot carriers. When applied in conventional solar cells, this alternating bias scheme has the potential of more than doubling their yielded net efficiency. When applied in conjunction with solar cells incorporating quantum wells (QWs) or quantum dots (QDs) based solar cells, the described alternating bias scheme has the potential of extending such solar cell power extraction coverage, possibly across the entire solar spectrum, thus enabling unprecedented solar power extraction efficiency. Within such cells, a novel alternating bias scheme extends the cell energy conversion capability above the cell material band-gap while the quantum confinement structures are used to extend the cell energy conversion capability below the cell band-gap. Light confinement cavities are incorporated into the cell structure in order to allow the absorption of the cell internal photo emission, thus further enhancing the cell efficiency.03-27-2014
20150033539Spatio-Temporal Directional Light Modulator - A spatio-temporal directional light modulator is introduced. This directional light modulator can be used to create 3D displays, ultra-high resolution 2D displays or 2D/3D switchable displays with extended viewing angle. The spatio-temporal aspects of this novel light modulator allow it to modulate the intensity, color and direction of the light it emits within an wide viewing angle. The inherently fast modulation and wide angular coverage capabilities of this directional light modulator increase the achievable viewing angle, and directional resolution making the 3D images created by the display be more realistic or alternatively the 2D images created by the display having ultra high resolution.02-05-2015

Patent applications by Dale A. Mcneill, Encinitas, CA US

Website © 2015 Advameg, Inc.