Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Da Zhang

Da Zhang, Taizhou City Zhejiang CN

Patent application numberDescriptionPublished
20110098502NEW PROCESS FOR RESOLVING S-3- (AMINOMETHYL)-5-METHYLHEXANOIC ACID - The present invention relates to a process for resolving S-3-(Aminomethyl)-5-methylhexanoic acid, which adopts benzoyl-L-glutamic acid, 4-methyl benzoyl-L-glutamic acid, benzene sulfonyl-L-glutamic acid or 4-methyl benzene sulfonyl-L-glutamic acid as a resolution agent to make a first resolution to racemic 3-aminomethyl-5-methylhexanoic acid, and adopts the resolution agent same to that of the first resolution to make a second resolution to the first resolution product to obtain the second resolution product, thus the resolution salt product is obtained, and further hydrolyzed by an acid, the resolution agent is extracted to be separated, the pH is adjusted to be neutral, the product S-3-(Aminomethyl)-5-methylhexanoic acid, i.e. the pregabalin, is then precipitated by distillation, therefore the present invention has the characteristics of polluting the environment slightly, high efficiency and stability, simpleness and practicality, producing product with high purity and a low sproduction cost, and is suitable for large-scale production.04-28-2011

Da Zhang, Liaoning CN

Patent application numberDescriptionPublished
20110063628APPARATUS AND METHOD FOR MEASURING THE LIQUID LEVEL OF MOLTEN METAL - An apparatus for measuring the liquid level of molten metal comprises an image measuring device (03-17-2011

Da Zhang, Liaoning Province CN

Patent application numberDescriptionPublished
20100236743Apparatus and method for measuring the surface temperature of continuous casting billet/slab - The present invention discloses a method and apparatus for measuring the temperature field on the surface of casting billet/slab, including: a thermal imager, an infrared radiation thermometer, a mechanical scanning unit, an image and data processing system; the thermal imager, the infrared radiation thermometer and the mechanical scanning unit are respectively connected to the image and data processing system; the infrared radiation thermometer is installed on the mechanical scanning unit and can measure the temperature of casting billet/slab surface by scanning; the thermal imager can measure the temperature of a certain area on the surface of casting billet/slab by thermal imaging. The present invention makes use of the combination of high-resolution thermal imager and scan-type infrared radiation thermometer, through the model-based filtering method, overcomes the influence of iron scales on the surface of casting billet/slab, and implements real-time stable measurement of surface temperature of casting billet/slab.09-23-2010

Da Zhang, Hopewell Junction, NY US

Patent application numberDescriptionPublished
20090242944METHOD OF FORMING A SEMICONDUCTOR DEVICE USING STRESS MEMORIZATION - A stress memorization technique (SMT) film is deposited over a semiconductor device. The SMT film is annealed with a low thermal budget anneal that is sufficient to create and transfer the stress of the SMT film to the semiconductor device. The SMT film is then removed. After the SMT film is removed, a second anneal is applied to the semiconductor device sufficiently long and at a sufficiently high temperature to activate dopants implanted for forming device source/drains. The result of this approach is that there is minimal gate dielectric growth in the channel along the border of the channel.10-01-2009
20090289280Method for Making Transistors and the Device Thereof - A semiconductor process and apparatus includes forming <100> channel orientation PMOS transistors (11-26-2009
20090291540CMOS Process with Optimized PMOS and NMOS Transistor Devices - A semiconductor process and apparatus includes forming NMOS and PMOS transistors (11-26-2009
20100019328Semiconductor Resistor Formed in Metal Gate Stack - A semiconductor process and apparatus fabricate a metal gate electrode (01-28-2010
20100078687Method for Transistor Fabrication with Optimized Performance - A semiconductor process and apparatus includes forming <100> channel orientation CMOS transistors (04-01-2010
20100171180METHOD FOR PFET ENHANCEMENT - A semiconductor process and apparatus includes forming PMOS transistors (07-08-2010
20110169096BALANCING NFET AND PFET PERFORMANCE USING STRAINING LAYERS - An integrated circuit structure includes a substrate and at least one pair of complementary transistors on or in the substrate. The pair of complementary transistors comprises a first transistor and a second transistor. The structure also includes a first stress-producing layer on the first transistor and the second transistor, and a second stress-producing layer on the first stress-producing layer over the first transistor and the second transistor. The first stress-producing layer applies tensile strain force on the first transistor and the second transistor. The second stress-producing layer applies compressive strain force on the first stress-producing layer, the first transistor, and the second transistor.07-14-2011
20110180883METHOD AND STRUCTURE TO IMPROVE BODY EFFECT AND JUNCTION CAPACITANCE - A method and structure implant a first-type impurity within a substrate to form a channel region within the substrate adjacent a top surface of the substrate; form a gate stack on the top surface of the substrate above the channel region; and implant a second-type impurity within the substrate to form source and drain regions within the substrate adjacent the top surface. The channel region is positioned between the source and drain regions. The second-type impurity has an opposite polarity with respect to the first-type impurity. The method and structure implant a greater concentration of the first-type impurity, relative to a concentration of the first-type impurity within the channel region, to form a primary body doping region within the substrate below (relative to the top surface) the channel region; and to form secondary body doping regions within the substrate below (relative to the top surface) the source and drain regions.07-28-2011
20120196413METHOD AND STRUCTURE TO IMPROVE BODY EFFECT AND JUNCTION CAPACITANCE - A method and structure implant a first-type impurity within a substrate to form a channel region within the substrate adjacent a top surface of the substrate; form a gate stack on the top surface of the substrate above the channel region; and implant a second-type impurity within the substrate to form source and drain regions within the substrate adjacent the top surface. The channel region is positioned between the source and drain regions. The second-type impurity has an opposite polarity with respect to the first-type impurity. The method and structure implant a greater concentration of the first-type impurity, relative to a concentration of the first-type impurity within the channel region, to form a primary body doping region within the substrate below (relative to the top surface) the channel region; and to form secondary body doping regions within the substrate below (relative to the top surface) the source and drain regions.08-02-2012

Patent applications by Da Zhang, Hopewell Junction, NY US

Da Zhang, Zhongshan CN

Patent application numberDescriptionPublished
20100150731FAN BLADES - A blade for an axial fan, including at least a front edge portion, a back edge portion, and multiple pressure balance holes. The front edge portion operates to blow air from the outside of the blade, the back edge portion operates to blow air to the outside of the blade, and the pressure balance hole is disposed on the back edge portion. The pressure balance holes are adapted to balance pressure and reduce pressure difference between the front side and the back side of the blade, eliminating backflow phenomenon caused by separation of boundary layer airflow at the back edge portion on a windward side of the blade and thus reducing power consumption and noise, and preventing dust from settling on the back edge portion on the windward side of the blade.06-17-2010

Da Zhang, Manchester, CT US

Patent application numberDescriptionPublished
20090091280STOCHASTIC ANTI-WINDUP PROPORTIONAL-INTEGRAL (PI) CONTROLLER - Different circuit-based implementations of stochastic anti-windup PI controllers are provided for a motor drive controller system. The designs can be implemented in a Field Programmable Gate Arrays (FPGA) device. The anti-windup PI controllers are implemented stochastically so as to enhance the computational capability of FPGA.04-09-2009
20110187199APPARATUS AND METHOD FOR BOOSTING OUTPUT OF A GENERATOR SET - An apparatus and method for boosting output of a generator set are provided. The output of the generator set is connected to an electrical load. The apparatus includes an energy storage unit, and a power-electronic unit. The energy storage unit uses batteries and capacitors to store electric energy. The power-electronic unit measures an electrical parameter of the output of the generator set. Based on the measured electrical parameter and a predefined criterion, the power-electronic unit determines additional energy required by the electrical load. Thereafter, the power-electronic unit supplies the additional energy to the electrical load. The additional energy is drawn from the energy storage unit.08-04-2011
20140152212METHOD FOR SMOOTH MOTOR STARTUP - A method of conducting smooth motor startup is provided and includes operating a motor in an open loop control scheme at startup, operating the motor in a closed loop sensorless control scheme at a time after startup and transitioning between the open loop control scheme and the closed loop control scheme by reducing a difference between an estimated rotor angle of the motor and a commanded ramping angle of the motor.06-05-2014

Patent applications by Da Zhang, Manchester, CT US

Da Zhang, Fishkill, NY US

Patent application numberDescriptionPublished
20090020783TRANSISTOR WITH DIFFERENTLY DOPED STRAINED CURRENT ELECTRODE REGION - A transistor is formed by providing a semiconductor layer and forming a control electrode overlying the semiconductor layer. A portion of the semiconductor layer is removed lateral to the control electrode to form a first recess and a second recess on opposing sides of the control electrode. A first stressor is formed within the first recess and has a first doping profile. A second stressor is formed within the second recess and has the first doping profile. A third stressor is formed overlying the first stressor. The third stressor has a second doping profile that has a higher electrode current doping concentration than the first profile. A fourth stressor overlying the second stressor is formed and has the second doping profile. A first current electrode and a second current electrode of the transistor include at least a portion of the third stressor and the fourth stressor, respectively.01-22-2009
20090026552METHOD FOR FORMING A TRANSISTOR HAVING GATE DIELECTRIC PROTECTION AND STRUCTURE - A transistor structure is formed by providing a semiconductor substrate and providing a gate above the semiconductor substrate. The gate is separated from the semiconductor substrate by a gate insulating layer. A source and a drain are provided adjacent the gate to define a transistor channel underlying the gate and separated from the gate by the gate insulating layer. A barrier layer is formed by applying nitrogen or carbon on opposing outer vertical sides of the transistor channel between the transistor channel and each of the source and the drain. In each of the nitrogen and the carbon embodiments, the vertical channel barrier retards diffusion of the source/drain dopant species into the transistor channel. There are methods for forming the transistor structure.01-29-2009
20090026554SOURCE/DRAIN STRESSORS FORMED USING IN-SITU EPITAXIAL GROWTH - A method for forming a semiconductor device is provided. The method includes forming a semiconductor layer. The method further includes forming a gate structure overlying the semiconductor layer. The method further includes forming a high-k sidewall spacer adjacent to the gate structure. The method further includes forming a recess in the semiconductor layer, the recess aligned to the high-k sidewall spacer. The method further includes forming an in-situ doped epitaxial material in the recess, the epitaxial material having a natural lattice constant different from a lattice constant of the semiconductor layer to create stress in a channel region of the semiconductor device.01-29-2009

Da Zhang, Austin, TX US

Patent application numberDescriptionPublished
20080197412MULTI-LAYER SOURCE/DRAIN STRESSOR - A method for forming a semiconductor device includes forming a recess in a source region and a recess in a drain region of the semiconductor device. The method further includes forming a first semiconductor material layer in the recess in the source region and a second semiconductor material layer in the recess in the drain region, wherein each of the first semiconductor material layer and the second semiconductor material layer are formed using a stressor material having a first ratio of an atomic concentration of a first element and an atomic concentration of a second element, wherein the first element is silicon and a first level of concentration of a doping material. The method further includes forming additional semiconductor material layers overlying the first semiconductor material layer and the second semiconductor material layer that have a different ratio of the atomic concentration of the first element and the second element.08-21-2008
20080203449SOURCE/DRAIN STRESSOR AND METHOD THEREFOR - A method for forming a semiconductor device is provided. The method includes forming a gate structure overlying a substrate. The method further includes forming a sidewall spacer adjacent to the gate structure. The method further includes performing an angled implant in a direction of a source side of the semiconductor device. The method further includes annealing the semiconductor device. The method further includes forming recesses adjacent opposite ends of the sidewall spacer in the substrate to expose a first type of semiconductor material. The method further includes epitaxially growing a second type of semiconductor material in the recesses, wherein the second type of semiconductor material has a lattice constant different from a lattice constant of the first type of semiconductor material to create stress in a channel region of the semiconductor device.08-28-2008
20080206940FORMING A SEMICONDUCTOR DEVICE HAVING EPITAXIALLY GROWN SOURCE AND DRAIN REGIONS - A semiconductor device structure is made on a semiconductor substrate having a semiconductor layer having isolation regions. A first gate structure is formed over a first region of the semiconductor layer, and a second gate structure is over a second region of the semiconductor layer. A first insulating layer is formed over the first and second regions. The first insulating layer can function as a mask during an etch of the semiconductor layer and can be removed selective to the isolation regions and the sidewall spacers. The first insulating layer is removed from over the first region to leave a remaining portion of the first insulating layer over the second region. The semiconductor layer is recessed in the first region adjacent to the first gate to form recesses. A semiconductor material is epitaxially grown in the recesses. The remaining portion of the first insulating layer is removed.08-28-2008
20080261362METHOD OF MAKING A SEMICONDUCTOR DEVICE USING A STRESSOR - A method for forming a semiconductor device includes providing a substrate and forming a p-channel device and an n-channel device, each of the p-channel device and the n-channel device comprising a source, a drain, and a gate, the p-channel device having a first sidewall spacer and the n-channel device having a second sidewall spacer. The method further includes forming a liner and forming a tensile stressor layer over the liner and removing a portion of the tensile stressor layer from a region overlying the p-channel device. The method further includes transferring a stress characteristic of an overlying portion of a remaining portion of the tensile stressor layer to a channel of the n-channel device. The method further includes using the remaining portion of the tensile stressor layer as a hard mask, forming a first recess and a second recess adjacent the gate of the p-channel device.10-23-2008
20080296620ELECTRONIC DEVICE INCLUDING A SEMICONDUCTOR FIN AND A PROCESS FOR FORMING THE ELECTRONIC DEVICE - An electronic device can include a semiconductor fin overlying an insulating layer. The electronic device can also include a semiconductor layer overlying the semiconductor fin. The semiconductor layer can have a first portion and a second portion that are spaced-apart from each other. In one aspect, the electronic device can include a conductive member that lies between and spaced-apart from the first and second portions of the semiconductor layer. The electronic device can also include a metal-semiconductor layer overlying the semiconductor layer. In another aspect, the semiconductor layer can abut the semiconductor fin and include a dopant. In a further aspect, a process of forming the electronic device can include reacting a metal-containing layer and a semiconductor layer to form a metal-semiconductor layer. In another aspect, a process can include forming a semiconductor layer, including a dopant, abutting a wall surface of a semiconductor fin.12-04-2008
20110163360METHOD FOR FORMING A TRANSISTOR HAVING GATE DIELECTRIC PROTECTION AND STRUCTURE - A transistor structure is formed by providing a semiconductor substrate and providing a gate above the semiconductor substrate. The gate is separated from the semiconductor substrate by a gate insulating layer. A source and a drain are provided adjacent the gate to define a transistor channel underlying the gate and separated from the gate by the gate insulating layer. A barrier layer is formed by applying nitrogen or carbon on opposing outer vertical sides of the transistor channel between the transistor channel and each of the source and the drain. In each of the nitrogen and the carbon embodiments, the vertical channel barrier retards diffusion of the source/drain dopant species into the transistor channel. There are methods for forming the transistor structure.07-07-2011
20130102143METHOD OF MAKING A NON-VOLATILE MEMORY CELL HAVING A FLOATING GATE - Forming an NVM structure includes forming a floating gate layer; forming a first dielectric layer over the floating gate layer; forming a plurality of nanocrystals over the first dielectric layer; etching the first dielectric layer using the plurality of nanocrystals as a mask to form dielectric structures, wherein the floating gate layer is exposed between adjacent dielectric structures; etching a first depth into the floating gate layer using the plurality of dielectric structures as a mask to form a plurality of patterned structures, wherein the first depth is less than a thickness of the floating gate layer; patterning the floating gate layer to form a floating gate; forming a second dielectric layer over the floating gate, wherein the second dielectric layer is formed over the patterned structures and on the floating gate layer between adjacent patterned structures; and forming a control gate layer over the second dielectric layer.04-25-2013
20130109141TRANSISTORS WITH DIFFERENT THRESHOLD VOLTAGES05-02-2013

Patent applications by Da Zhang, Austin, TX US

Da Zhang, Bristol, CT US

Patent application numberDescriptionPublished
20150236618SYSTEMS AND METHODS FOR SPACE VECTOR PULSE WIDTH MODULATION SWITCHING USING BOOT-STRAP CHARGING CIRCUITS - Embodiments relate to systems and methods for space vector pulse width modulation switching using bootstrap charging circuits. Platforms and techniques are provided for controlling a power inverter using space vector pulse width modulation (PWM) operation. The inverter (08-20-2015

Da Zhang, Wuhan CN

Patent application numberDescriptionPublished
20150240117ABRASION-RESISTANT COATING MATERIAL AND METHOD OF USING THE SAME - A coating material, including a bottom layer, a middle layer and a surface layer. The bottom layer is an epoxy mortar having a thickness of between 1 and 3 mm, the middle layer is an epoxy resin adhesive having a thickness of between 0.1 and 0.5 mm, and the surface layer is a nanomaterial-modified polyaspartic having a thickness of between 0.3 and 0.5 mm. The epoxy resin adhesive has a viscosity of between 50 and 200 mPa·s.08-27-2015
Website © 2015 Advameg, Inc.