Patent application number | Description | Published |
20080274385 | Fuel Cells - This invention concerns a redox fuel cell comprising an anode and a cathode separated by an ion selective polymer electrolyte-membrane, preferably a bi-membrane, the cathode comprising a cathodic material and a proton-conducting polymeric material; means for supplying a fuel to the anode region of the cell; means for supplying an oxidant to the cathode region of the cell; means for providing an electrical circuit between the anode and the cathode; a non-volatile redox couple in solution in flowing fluid communication with the cathode, the redox couple being at least partially reduced at the cathode in operation of the cell, and at least partially re-generated by reaction with the oxidant after such reduction at the cathode. | 11-06-2008 |
20090317668 | FUEL CELLS - This invention provides a redox fuel cell comprising an anode and a cathode separated by an ion selective polymer electrolyte membrane; means for supplying a fuel to the anode region of the cell; means for supplying an oxidant to the cathode region of the cell; means for providing an electrical circuit between the anode and the cathode; a non-volatile catholyte solution flowing fluid communication with the cathode, the catholyte solution comprising a polyoxometallate redox couple being at least partially reduced at the cathode in operation of the cell, and at least partially re-generated by reaction with the oxidant after such reduction at the cathode, the catholyte solution comprising at least about 0.075M of the said polyoxometallate. | 12-24-2009 |
20090325002 | FUEL CELLS - The invention provides a fuel cell comprising an anode in an anode region of the cell and a cathode in a cathode region of the cell, the anode being separated from the cathode by an ion selective polymer electrolyte membrane, the anode region of the cell being supplied in use thereof with an alcoholic fuel, the cathode region of the cell being supplied in use thereof with an oxidant, the cell being provided with means for generating an electrical circuit between the anode and the cathode and with a non-volatile redox couple in solution in flowing fluid communication with the cathode in the cathode region of the cell, the redox couple being at least partially reduced at the cathode in operation of the cell, and at least partially re-generated by reaction with the oxidant after such reduction at the cathode, the redox couple and/or the concentration of the redox couple in the catholyte solution being selected so that the current density generated by the cell in operation is substantially unaffected by the crossover of the alcoholic fuel from the anode region of the cell to the cathode region of the cell across the polymer electrolyte membrane. | 12-31-2009 |
20100297522 | REDOX FUEL CELL - This invention provides a redox fuel cell comprising an anode and a cathode separated by an ion selective polymer electrolyte membrane; means for supplying a fuel to the anode region of the cell; means for supplying an oxidant to the cathode region of the cell; means for providing an electrical circuit between the anode and the cathode; a non-volatile catholyte solution flowing fluid communication with the cathode, the catholyte solution comprising a polyoxometallate redox couple being at least partially reduced at the cathode in operation of the cell, and at least partially re-generated by reaction with the oxidant after such reduction at the cathode, the catholyte solution comprising at least one counterion for the polyoxometallate redox couple wherein the at least one counterion comprises one or more divalent ions. | 11-25-2010 |
20110039170 | FUEL CELLS - The present invention concerns a fuel cell comprising a cathode in a cathode region of the cell and an anode in an anode region of the cell, the cathode being separated from the anode by an ion selective polymer electrolyte membrane, the cathode region of the cell being supplied in use thereof with an oxidant and a liquid low molecular weight fuel wherein at least some of the liquid low molecular weight fuel in use crosses the polymer electrolyte membrane to supply the anode region of the cell with liquid low molecular weight fuel, the cell being provided with means for generating an electrical circuit between the cathode and the anode. | 02-17-2011 |
20120231363 | FUEL CELLS - The invention concerns the use as a redox a catalyst and/or mediator in a fuel cell catholyte solution of the compound of Formula (I) wherein: X is selected from hydrogen and from various functional groups; R | 09-13-2012 |
20130157156 | FUEL CELLS WITH IMPROVED RESISTANCE TO FUEL CROSSOVER - The invention provides a fuel cell comprising an anode in an anode region of the cell and a cathode in a cathode region of the cell, the anode being separated from the cathode by an ion selective polymer electrolyte membrane, the anode region of the cell being supplied in use thereof with an alcoholic fuel, the cathode region of the cell being supplied in use thereof with an oxidant, the cell being provided with means for generating an electrical circuit between the anode and the cathode and with a non-volatile redox couple in solution in flowing fluid communication with the cathode in the cathode region of the cell, the redox couple being at least partially reduced at the cathode in operation of the cell, and at least partially regenerated by reaction with the oxidant after such reduction at the cathode. | 06-20-2013 |
20130256152 | CELL - An electrolytic cell comprising an anode in an anode region and a cathode in a cathode region, the anode region and the cathode regions separated by an ion selective polymer electrolyte membrane; an anolyte in flowing fluid communication with the anode, the anolyte comprising water and a redox mediator couple which is at least partially oxidised at the anode in operation of the cell and at least partially reduced by reaction with water after such oxidation at the anode. | 10-03-2013 |