Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Clarence M.

Clarence M. Ivester, Arlington, WA US

Patent application numberDescriptionPublished
20130081330AIRCRAFT INTERIOR DOOR ASSEMBLY - An aircraft interior door assembly, such as for a lavatory, including a door panel configured to simultaneously pivot and translate within its opening, a first pair of linear door guides running parallel to the door opening for guiding pivoting and translational movement of the door panel, the door panel pivotally attached to the first pair of linear door guides mid-span along its length, and a second pair of linear door guides running along an adjacent wall at an angle to the door opening for guiding an attached side of the door panel along the adjacent wall.04-04-2013

Clarence M. Korendyke, Fort Washington, MD US

Patent application numberDescriptionPublished
20100013645METHOD AND SYSTEM OF IMAGING ELECTRONS IN THE NEAR EARTH SPACE ENVIRONMENT - A method and system of globally monitoring space weather conditions, use an imager, including one or more telescopic instruments and one or more processors, containing computer program code. The imager is configured on a platform; and positioned in the near Earth space environment, where, based on the executed computer program code, the imager compiles information about space weather conditions, by directly detecting electron emissions on a global basis. Network interfaces coupled with the imager provide, over a communications network, a plurality of communications and information, about space weather conditions, between the imager and a plurality of operational space assets and operational Earth assets. The plurality of communications and information about space weather conditions includes signals and information which automatically alert the plurality of operational space assets and operational Earth assets of effects of a solar wind.01-21-2010

Clarence M. Lee, Mitchellville, MD US

Patent application numberDescriptionPublished
20140336187METHODS FOR TREATING LEISHMANIASIS - Methods are provided to inhibit proliferation of 11-13-2014
20150073177METHOD FOR INHIBITING TRYPANOSOMA CRUZI - Methods are provided to inhibit proliferation of 03-12-2015

Clarence M. Panchison, Warsaw, IN US

Patent application numberDescriptionPublished
20080281428METHODS AND APPARATUSES FOR ATTACHING SOFT TISSUE TO ORTHOPAEDIC IMPLANTS - Methods and apparatuses for attaching soft tissue and/or bone to orthopaedic implants. In one exemplary embodiment, the methods and apparatuses are used to attach soft tissue and/or bone to a proximal tibial implant. In another exemplary embodiment, the methods and apparatuses are used to attach soft tissue and/or bone to a proximal femoral implant.11-13-2008
20090192610ORTHOPEDIC COMPONENT OF LOW STIFFNESS - An orthopedic component having multiple layers that are selected to provide an overall modulus that is substantially lower than the modulus of known orthopedic components to more closely approximate the modulus of the bone into which the orthopedic component is implanted. In one exemplary embodiment, the orthopedic component is an acetabular shell. For example, the acetabular shell may include an outer layer configured for securement to the natural acetabulum of a patient and an inner layer configured to receive an acetabular liner. The head of a femoral prosthesis articulates against the acetabular liner to replicate the function of a natural hip joint. Alternatively, the inner layer of the acetabular shell may act as an integral acetabular liner against which the head of the femoral prosthesis articulates.07-30-2009
20090222007MODULAR STEM EXTENSION - The modular stem component may include a shaft portion, a head, and a sleeve. The shaft portion is configured for receipt within the intramedullary canal of a bone and the head is configured to receive another component of a modular prosthetic system, such as a femoral neck, thereon. In one exemplary embodiment, the head extends radially around at least a portion of the stem and includes a rib defining a flange extending therefrom. The sleeve, which is formed as an independent part of the modular stem component and is made at least partially of a highly porous biomaterial, includes opposing ends and has a bore extending therethrough. The bore is configured to facilitate sliding receipt of the sleeve on the head.09-03-2009
20100143576DIRECT APPLICATION OF PRESSURE FOR BONDING POROUS COATINGS TO SUBSTRATE MATERIALS USED IN ORTHOPAEDIC IMPLANTS - A method for constantly controlling a direct application of pressure for bonding porous coatings to substrate materials used in orthopaedic implants. The direct pressure is applied to an interface between the porous coating and the substrate material via a pressure application mechanism unaffected by heat and air pressure conditions of the bonding process. The pressure application mechanism maintains a pressure on the implant which is constantly controlled throughout the bonding process.06-10-2010
20110009973METHODS AND APPARATUSES FOR ATTACHING TISSUE TO ORTHOPAEDIC IMPLANTS - Methods and apparatuses for attaching tissue structures to orthopaedic implants. In one exemplary embodiment, the methods and apparatuses are used to attach soft tissue and/or bone to a proximal tibial implant. In another exemplary embodiment, the methods and apparatuses are used to attach soft tissue and/or bone to a proximal femoral implant.01-13-2011
20110230973METHOD FOR BONDING A TANTALUM STRUCTURE TO A COBALT-ALLOY SUBSTRATE - Methods for bonding a porous tantalum structure to a substrate are provided. The method includes placing a compressible or porous interlayer between a porous tantalum structure and a cobalt or cobalt-chromium substrate to form an assembly. The interlayer comprising a metal or metal alloy that has solid state solubility with both the substrate and the porous tantalum structure. Heat and pressure are applied to the assembly to achieve solid state diffusion between the substrate and the interlayer and the between the porous tantalum structure and the interlayer.09-22-2011
20120125896RESISTANCE WELDING A POROUS METAL LAYER TO A METAL SUBSTRATE - An apparatus and method are provided for manufacturing an orthopedic prosthesis by resistance welding a porous metal layer of the orthopedic prosthesis onto an underlying metal substrate of the orthopedic prosthesis. The resistance welding process involves directing an electrical current through the porous layer and the substrate, which dissipates as heat to cause softening and/or melting of the materials, especially along the interface between the porous layer and the substrate. The softened and/or melted materials undergo metallurgical bonding at points of contact between the porous layer and the substrate to fixedly secure the porous layer onto the substrate.05-24-2012
20130180970RESISTANCE WELDING A POROUS METAL LAYER TO A METAL SUBSTRATE - An apparatus and method are provided for manufacturing an orthopedic prosthesis by resistance welding a porous metal layer of the orthopedic prosthesis onto an underlying metal substrate of the orthopedic prosthesis. The resistance welding process involves directing an electrical current through the porous layer and the substrate, which dissipates as heat to cause softening and/or melting of the materials, especially along the interface between the porous layer and the substrate. The softened and/or melted materials undergo metallurgical bonding at points of contact between the porous layer and the substrate to fixedly secure the porous layer onto the substrate.07-18-2013
20140131925ORTHOPEDIC COMPONENT OF LOW STIFFNESS - An orthopedic component having multiple layers that are selected to provide an overall modulus that is substantially lower than the modulus of known orthopedic components to more closely approximate the modulus of the bone into which the orthopedic component is implanted. In one exemplary embodiment, the orthopedic component is an acetabular shell. For example, the acetabular shell may include an outer layer configured for securement to the natural acetabulum of a patient and an inner layer configured to receive an acetabular liner. The head of a femoral prosthesis articulates against the acetabular liner to replicate the function of a natural hip joint. Alternatively, the inner layer of the acetabular shell may act as an integral acetabular liner against which the head of the femoral prosthesis articulates.05-15-2014
20140151342RESISTANCE WELDING A POROUS METAL LAYER TO A METAL SUBSTRATE - An apparatus and method are provided for manufacturing an orthopedic prosthesis by resistance welding a porous metal layer of the orthopedic prosthesis onto an underlying metal substrate of the orthopedic prosthesis. The resistance welding process involves directing an electrical current through the porous layer and the substrate, which dissipates as heat to cause softening and/or melting of the materials, especially along the interface between the porous layer and the substrate. The softened and/or melted materials undergo metallurgical bonding at points of contact between the porous layer and the substrate to fixedly secure the porous layer onto the substrate.06-05-2014
20150014397METHOD FOR BONDING A TANTALUM STRUCTURE TO A COBALT-ALLOY SUBSTRATE - Methods for bonding a porous tantalum structure to a substrate are provided. The method includes placing a compressible or porous interlayer between a porous tantalum structure and a cobalt or cobalt-chromium substrate to form an assembly. The interlayer comprising a metal or metal alloy that has solid state solubility with both the substrate and the porous tantalum structure. Heat and pressure are applied to the assembly to achieve solid state diffusion between the substrate and the interlayer and the between the porous tantalum structure and the interlayer.01-15-2015

Patent applications by Clarence M. Panchison, Warsaw, IN US

Clarence M. Pruet, Iii, Flower Mound, TX US

Patent application numberDescriptionPublished
20120310886GRID BASED REPLICATION - Provided are techniques for replication in a grid based environment. Grid control structures, including a grid command structure, are created. At an authorized node in a grid of nodes, a Data Definition Language (DDL) operation is received, the DDL operation is inserted into the grid command structure, and the DDL operation is propagated from the authorized node to one or more other nodes in the grid of nodes at the end of a transaction that inserted the DDL operation into the grid command structure.12-06-2012
20130006934GRID BASED REPLICATION - Provided are techniques for replication in a grid based environment. Grid control structures, including a grid command structure, are created. At an authorized node in a grid of nodes, a Data Definition Language (DDL) operation is received, the DDL operation is inserted into the grid command structure, and the DDL operation is propagated from the authorized node to one or more other nodes in the grid of nodes at the end of a transaction that inserted the DDL operation into the grid command structure.01-03-2013
20130031051ADDING A KEW COLUMN TO A TABLE TO BE REPLICATED - Techniques are disclosed for adding a key column to a table to be replicated, where the key column stores key values for use in replication. In one embodiment, a request is received to add a table to a replication domain, such that the table is replicated from a first database server to at least a second database server. Key values are generated for both existing records and new records subsequently requested to be inserted into the table, respectively. Each generated key value is unique across the replication domain. Further, the key column may be added to the table without requiring exclusive access to the table.01-31-2013

Clarence M. Pruet, Iii, Mound, TX US

Patent application numberDescriptionPublished
20130318043ADDING A KEY COLUMN TO A TABLE TO BE REPLICATED - Techniques are disclosed for adding a key column to a table to be replicated, where the key column stores key values for use in replication. In one embodiment, a request is received to add a table to a replication domain, such that the table is replicated from a first database server to at least a second database server. Key values are generated for both existing records and new records subsequently requested to be inserted into the table, respectively. Each generated key value is unique across the replication domain. Further, the key column may be added to the table without requiring exclusive access to the table.11-28-2013
Website © 2015 Advameg, Inc.