Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Chunqing Liu, Schaumburg US

Chunqing Liu, Schaumburg, IL US

Patent application numberDescriptionPublished
20080295691UV CROSS-LINKED POLYMER FUNCTIONALIZED MOLECULAR SIEVE/POLYMER MIXED MATRIX MEMBRANES - The present invention discloses methods of separating gases using high performance UV cross-linked polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs) with either no macrovoids or voids of less than several angstroms at the interface of the polymer matrix and the molecular sieves. These UV cross-linked MMMs were prepared by incorporating polyethersulfone (PES) functionalized molecular sieves such as AIPO-14 and UZM-25 small pore microporous molecular sieves into a continuous UV cross-linkable polyimide polymer matrix followed by UV cross-linking. The UV cross-linked MMMs in the form of symmetric dense film, asymmetric flat sheet membrane, or asymmetric hollow fiber membranes have good flexibility, high mechanical strength, and exhibit significantly enhanced selectivity and permeability over polymer membranes made from corresponding continuous polyimide polymer matrices for carbon dioxide/methane and hydrogen/methane separations. The MMMs of the present invention are suitable for a variety of liquid, gas, and vapor separations.12-04-2008
20080295692UV CROSS-LINKED POLYMER FUNCTIONALIZED MOLECULAR SIEVE/POLYMER MIXED MATRIX MEMBRANES FOR SULFUR REDUCTION - The present invention discloses high performance UV cross-linked polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs), the method of making these membranes, and the use of such membranes for separations. These UV cross-linked MMMs were prepared by incorporating polyethersulfone functionalized molecular sieves such as AlPO-14 and UZM-25 into a continuous UV cross-linkable polymer matrix followed by UV cross-linking. The UV cross-linked MMMs in the form of symmetric dense film, asymmetric flat sheet membrane, or asymmetric hollow fiber membranes described in the current invention have good flexibility and high mechanical strength, and exhibit significantly enhanced selectivity and permeability over the polymer membranes made from the corresponding continuous polyimide polymer matrices for carbon dioxide/methane (CO12-04-2008
20080296527UV CROSS-LINKED POLYMER FUNCTIONALIZED MOLECULAR SIEVE/POLYMER MIXED MATRIX MEMBRANES - The present invention discloses high performance UV cross-linked polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs) with either no macrovoids or voids of less than several angstroms at the interface of the polymer matrix and the molecular sieves. These UV cross-linked MMMs were prepared by incorporating polyethersulfone (PES) functionalized molecular sieves such as AlPO-14 and UZM-25 small pore microporous molecular sieves into a continuous UV cross-linkable polyimide polymer matrix followed by UV cross-linking. The UV cross-linked MMMs in the form of symmetric dense film, asymmetric flat sheet membrane, or asymmetric hollow fiber membranes have good flexibility, high mechanical strength, and exhibit significantly enhanced selectivity and permeability over polymer membranes made from corresponding continuous polyimide polymer matrices for carbon dioxide/methane and hydrogen/methane separations. The MMMs of the present invention are suitable for a variety of liquid, gas, and vapor separations.12-04-2008
20080300336UV CROSS-LINKED POLYMER FUNCTIONALIZED MOLECULAR SIEVE/POLYMER MIXED MATRIX MEMBRANES - The present invention discloses a method of making high performance UV cross-linked polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs) with either no macrovoids or voids of less than several angstroms at the interface of the polymer matrix and the molecular sieves. These UV cross-linked MMMs were prepared by incorporating polyethersulfone (PES) functionalized molecular sieves such as AlPO-14 and UZM-25 small pore microporous molecular sieves into a continuous UV cross-linkable polyimide polymer matrix followed by UV cross-linking. The UV cross-linked MMMs in the form of symmetric dense film, asymmetric flat sheet membrane, or asymmetric hollow fiber membranes have good flexibility, high mechanical strength, and exhibit significantly enhanced selectivity and permeability over polymer membranes made from corresponding continuous polyimide polymer matrices for carbon dioxide/methane and hydrogen/methane separations. The MMMs of the present invention are suitable for a variety of liquid, gas, and vapor separations.12-04-2008
20090031897Cross-Linkable and Cross-Linked Mixed Matrix Membranes and Methods of Making the Same - The present invention is for novel high performance cross-linkable and cross-linked mixed matrix membranes and the use of such membranes for separations such as for CO02-05-2009
20090114089Microporous Aluminophosphate Molecular Sieve Membranes for Highly Selective Separations - The present invention discloses microporous aluminophosphate (AlPO05-07-2009
20090120875High Performance Mixed Matrix Membranes Incorporating at Least Two Kinds of Molecular Sieves - The present invention discloses a new type of high performance mixed matrix membranes (MMMs) and methods for making and using the same. The MMMs comprise a continuous polymer matrix and at least two types of molecular sieves dispersed therein. The continuous polymer matrix in the MMM contains at least one type of polymer. The MMM in the form of a dense film, asymmetric flat sheet membrane or otherwise prepared exhibits simultaneously improved selectivity and permeability for gas separations compared to polymer membranes made from a continuous polymer matrix without any molecular sieves or with only one type of molecular sieve. MMMs of the present invention are suitable for a wide range of gas, vapor, and liquid separations such as alcohol/water, CO05-14-2009
20090126566Polymer Functionalized Molecular Sieve/Polymer Mixed Matrix Membranes - The invention discloses the use of polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs) with either no macrovoids or voids of less than several Angstroms at the interface of the polymer matrix and the molecular sieves by incorporating polyethersulfone (PES) or cellulose triacetate (CTA) functionalized molecular sieves into a continuous polyimide or cellulose acetate (CA) polymer matrix. The MMMs, particularly PES functionalized AlPO-14/polyimide MMMs and CTA functionalized AlPO-14/CA MMMs, in the form of symmetric dense film, asymmetric flat sheet membrane, or asymmetric hollow fiber have good flexibility and high mechanical strength, and exhibit significantly enhanced selectivity and/or permeability over the polymer membranes made from the corresponding continuous polymer matrices for carbon dioxide/methane (CO05-21-2009
20090126567Mixed Matrix Membranes Containing Molecular Sieves With Thin Plate Morphology - The present invention discloses mixed matrix membranes (MMMs) comprising a polymer matrix and molecular sieve particles and methods for making and using these membranes. The molecular sieve particles contain micropores or mesopores and exhibit a thin plate morphology with high aspect ratio and the plate thickness no more than 300 nm. This invention also pertains to controlling the alignment of the thin plate molecular sieve particles in the continuous polymer matrix of the thin dense selective layer of the asymmetric mixed matrix membranes. These MMMs exhibited much higher selectivity improvement than those comprising molecular sieve particles with other kinds of morphology for gas separations such as CO05-21-2009
20090126570Polymer Functionalized Molecular Sieve/Polymer Mixed Matrix Membranes - The present invention discloses polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs) with either no macrovoids or voids of less than several Angstroms at the interface of the polymer matrix and the molecular sieves by incorporating polyethersulfone (PES) or cellulose triacetate (CTA) functionalized molecular sieves into a continuous polyimide or cellulose acetate (CA) polymer matrix. The MMMs, in the form of symmetric dense film, asymmetric flat sheet membrane, or asymmetric hollow fiber have good flexibility and high mechanical strength, and exhibit significantly enhanced selectivity and/or permeability over the polymer membranes made from the corresponding continuous polymer matrices for carbon dioxide/methane (CO05-21-2009
20090127197Polymer Functionalized Molecular Sieve/Polymer Mixed Matrix Membranes - The present invention discloses polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs) with either no macrovoids or voids of less than several Angstroms at the interface of the polymer matrix and the molecular sieves by incorporating polymer functionalized molecular sieves into a continuous polymer matrix. The MMMs exhibit significantly enhanced selectivity and/or permeability over the polymer membranes made from the corresponding continuous polymer matrices for separations. The MMMs are suitable for a variety of liquid, gas, and vapor separations such as deep desulfurization of gasoline and diesel fuels, ethanol/water separations, pervaporation dehydration of aqueous/organic mixtures, CO05-21-2009
20090131242Method of Making Polymer Functionalized Molecular Sieve/Polymer Mixed Matrix Membranes - The present invention discloses a method of making polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs) with either no macrovoids or voids of less than several Angstroms at the interface of the polymer matrix and the molecular sieves by incorporating polyethersulfone (PES) or cellulose triacetate (CTA) functionalized molecular sieves into a continuous polyimide or cellulose acetate polymer matrix. The MMMs, particularly PES functionalized AlPO-14/polyimide MMMs and CTA functionalized AlPO-14/CA MMMs have good flexibility and high mechanical strength, and exhibit significantly enhanced selectivity and/or permeability over the polymer membranes made from the corresponding continuous polymer matrices for carbon dioxide/methane (CO05-21-2009
20090149313Mixed Matrix Membranes Containing Low Acidity Nano-Sized SAPO-34 Molecular Sieves - The present invention discloses mixed matrix membranes (MMMs) containing polymer-functionalized low acidity, ultra low silica-to-alumina ratio, nano-sized SAPO-34 small pore molecular sieves and a continuous polymer matrix and methods for making and using these membranes. The surface functionalization of these molecular sieves provides a desired interfacial adhesion between SAPO-34 nano-particles and the continuous polymer matrix, which results in either no macrovoids or voids of less than 5 angstroms at the interface of the continuous polymer matrix and SAPO-34 in the MMMs. These MMMs, in the form of symmetric dense film, asymmetric flat sheet membrane, or asymmetric hollow fiber membranes, have good flexibility and high mechanical strength, and exhibit remarkably enhanced CO06-11-2009
20090149565Method for Making High Performance Mixed Matrix Membranes - The present invention discloses method for making defect-free high performance mixed matrix membranes (MMMs) containing a continuous polymer matrix and dispersed molecular sieves such as AlPO-14 or UZM-5. These MMMs can be used for separations. The novel method for making defect-free high performance MMMs comprises: post treating the MMM at a temperature ≧150° C. This new method results in a MMM with either no macrovoids or voids of less than 5 angstroms at the interface of the continuous polymer matrix and the molecular sieves. The MMMs are in the form of symmetric dense film, thin-film composite (TFC), asymmetric flat sheet or asymmetric hollow fiber. These MMMs have good flexibility and high mechanical strength, and exhibit high carbon dioxide/methane (CO06-11-2009
20090152755Molecular Sieve/Polymer Hollow Fiber Mixed Matrix Membranes - The present invention discloses a method for making mixed matrix membranes (MMMs) and methods for using these membranes. These MMMs contain a continuous polymer matrix and dispersed microporous molecular sieve particles. This invention also pertains to control the thickness of the thin dense selective mixed matrix layer equal to or greater than the particle size of the largest molecular sieve particles for making large scale asymmetric MMMs. In particular, the invention is directed to make asymmetric hollow fiber MMM by a phase inversion technique. The MMMs of the present invention exhibit at least 20% increase in selectivity compared to the polymer membranes prepared from their corresponding continuous polymer matrices. The MMMs of the present invention are suitable for a variety of liquid, gas, and vapor separations.06-18-2009
20090152763Molecular Sieve/Polymer Asymmetric Flat Sheet Mixed Matrix Membranes - The present invention discloses an approach for making mixed matrix membranes (MMMS) and methods for using these membranes. These MMMs contain a continuous polymer matrix and dispersed microporous molecular sieve particles. This invention also pertains to control of the thickness of the thin dense selective mixed matrix membrane layer that is equal to or greater than the particle size of the largest molecular sieve particles for making large scale asymmetric MMMs. In particular, the invention is directed to making asymmetric flat sheet MMM by a phase inversion technique. The MMMs of the present invention exhibit at least 20% increase in selectivity compared to the polymer membranes prepared from their corresponding continuous polymer matrices. The MMMs of the present invention are suitable for a variety of liquid, gas, and vapor separations.06-18-2009
20090155464Molecular Sieve/Polymer Mixed Matrix Membranes - The present invention discloses an approach for making mixed matrix membranes (MMMs) and methods for using these membranes. These MMMs contain a continuous polymer matrix and dispersed microporous molecular sieve particles. In particular, the present invention is directed to make asymmetric thin-film composite MMMs by coating a thin layer of molecular sieve/polymer mixed matrix solution on top of a porous support substrate followed by controlling the formation of a thin dense selective mixed matrix layer equal or larger in thickness than any of said molecular sieve particles. The MMMs of the present invention are suitable for a variety of liquid, gas, and vapor separations. The MMMs of the present invention have at least 20% increase in selectivity for these separations compared to the polymer membranes prepared from their corresponding continuous polymer matrices.06-18-2009
20090277327High Permeability Membrane Operated at Elevated Temperature for Upgrading Natural Gas - The present invention discloses a new process of treating natural gas using high gas permeability polybenzoxazole polymer membranes operated at high temperatures that can provide sufficient dew point margin for the product gas. The high gas permeability polybenzoxazole polymer membranes can be used for a single stage membrane system or for the first stage membrane in a two stage membrane system for natural gas upgrading. Simulation study has demonstrated that a costly membrane pretreatment system such as a MemGuard™ system will not be required in the present new process. The new process can achieve significant capital cost saving and reduce the existing membrane footprint greater than 50%.11-12-2009
20090277837Fluoropolymer Coated Membranes - The present invention discloses fluoropolymer coated membranes and methods for making and using these membranes. The fluoropolymer coated membranes described in the current invention are prepared by coating a porous asymmetric membrane layer with a thin layer of fluoropolymer coating. The porous asymmetric membrane layer comprises an asymmetric cellulosic membrane, an asymmetric polymer membrane, or an asymmetric molecular sieve/polymer mixed matrix membrane with a low selectivity and high permeance. The fluoropolymer coating improves the selectivity of the porous asymmetric membrane layer and maintains the membrane performance with time. The fluoropolymer coated membranes are suitable for a variety of liquid, gas, and vapor separations such as desalination of water by reverse osmosis, non-aqueous liquid separation such as deep desulfurization of gasoline and diesel fuels, ethanol/water separations, pervaporation dehydration of aqueous/organic mixtures, CO11-12-2009
20090299015Crosslinked Organic-Inorganic Hybrid Membranes and Their Use in Gas Separation - The present invention is for crosslinked membranes and in particular for crosslinked poly(ethylene oxide)-cellulose acetate-silsesquioxane (PEO-CA-Si) organic-inorganic hybrid membranes and their use in gas separation. These crosslinked PEO-CA-Si membranes were prepared by in-situ sol-gel co-condensation of crosslinkable PEO-organotrialkoxysilane and CA-organotrialkoxysilane polymers in the presence of acetic acid catalyst during the formation of membranes. The crosslinkable PEO- and CA-organotrialkoxysilane polymers were synthesized via the reaction between the hydroxyl groups on PEO (or on CA) and the isocyanate on organotrialkoxysilane to form urethane linkages under mild conditions. The crosslinked PEO-CA-Si membranes exhibited both increased selectivity of CO12-03-2009
20090318620High Plasticization-Resistant Cross-Linked Polymeric Membranes for Separations - This invention involves a composition, a method of making, and an application of high plasticization-resistant chemically cross-linked polymeric membranes such as cross-linked cellulose acetate (CA) membrane. These cross-linked polymeric membranes with covalently interpolymer-chain-connected rigid networks showed no decrease in CO12-24-2009
20100058926PHOTO-CROSSLINKED GAS SELECTIVE MEMBRANES AS PART OF THIN FILM COMPOSITE HOLLOW FIBER MEMBRANES - A thin film composite membrane comprises a core layer and a sheath UV-crosslinked polymer layer. The thin film composite membrane is produced by the co-extrusion of two polymer solutions. The core layer and the sheath layer can be separately optimized. The sheath layer may be UV-crosslinked to provide stability and selectivity at the desired operating temperature of the composite membrane.03-11-2010
20100133171Polybenzoxazole Polymer-Based Mixed Matrix Membranes - The present invention discloses new types of polybenzoxazole-based mixed matrix membranes and methods for making and using these membranes. The polybenzoxazole-based mixed matrix membranes are prepared by fabricating a polyimide-based mixed matrix membrane by dispersing molecular sieve particles in a continuous aromatic polyimide matrix with pendent hydroxyl groups ortho to the heterocyclic imide nitrogen; and then converting the polyimide-based mixed matrix membrane to a polybenzoxazole-based mixed matrix membrane by heating between 300° and 600° C. under inert atmosphere or vacuum. The polybenzoxazole-based mixed matrix membranes of the present invention can be fabricated into any convenient geometry such as flat sheet (or spiral wound), tube, hollow fiber, or thin film composite. These polybenzoxazole-based mixed matrix membranes exhibit high thermal stability, significantly higher selectivity than the neat polybenzoxazole polymer membranes, and much higher permeability than traditional mixed matrix membranes.06-03-2010
20100133186High Performance Cross-Linked Polybenzoxazole and Polybenzothiazole Polymer Membranes - In the present invention high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes and methods for making and using these membranes have been developed. The cross-linked polybenzoxazole and polybenzothiazole polymer membranes are prepared by: 1) first synthesizing polyimide polymers comprising pendent functional groups (e.g., —OH or —SH) ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone; 2) fabricating polyimide membranes from these polymers; 3) converting the polyimide membranes to polybenzoxazole or polybenzothiazole membranes by heating under inert atmosphere such as nitrogen or vacuum; and 4) finally converting the membranes to high performance cross-linked polybenzoxazole or polybenzothiazole membranes by a crosslinking treatment, preferably UV radiation. The membranes can be fabricated into any convenient geometry. The high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes of the present invention are suitable for a variety of liquid, gas, and vapor separations.06-03-2010
20100133187Polybenzoxazole Polymer-Based Mixed Matrix Membranes - The present invention discloses new types of polybenzoxazole-based mixed matrix membranes and methods for making and using these membranes. The polybenzoxazole-based mixed matrix membranes are prepared by fabricating a polyimide-based mixed matrix membrane by dispersing molecular sieve particles in a continuous aromatic polyimide matrix with pendent hydroxyl groups ortho to the heterocyclic imide nitrogen; and then converting the polyimide-based mixed matrix membrane to a polybenzoxazole-based mixed matrix membrane by heating between 200° and 600° C. under inert atmosphere or vacuum. The polybenzoxazole-based mixed matrix membranes of the present invention can be fabricated into any convenient geometry such as flat sheet (or spiral wound), tube, hollow fiber, or thin film composite. These polybenzoxazole-based mixed matrix membranes exhibit high thermal stability, significantly higher selectivity than the neat polybenzoxazole polymer membranes, and much higher permeability than traditional mixed matrix membranes.06-03-2010
20100133188Polybenzoxazole Membranes Prepared From Aromatic Polyamide Membranes - The present invention discloses high performance polybenzoxazole membranes prepared from aromatic poly(o-hydroxy amide) membranes by thermal cyclization and a method for using these membranes. The polybenzoxazole membranes were prepared by thermal treating aromatic poly(o-hydroxy amide) membranes in a temperature range of 200° to 550° C. under inert atmosphere. The aromatic poly(o-hydroxy amide) membranes used for making the polybenzoxazole membranes were prepared from aromatic poly(o-hydroxy amide) polymers comprising pendent phenolic hydroxyl groups ortho to the amide nitrogen in the polymer backbone. In some embodiments of the invention, the polybenzoxazole membranes may be subjected to an additional crosslinking step to increase the selectivity of the membranes. These polybenzoxazole membranes showed significantly improved permeability for gas separations compared to the precursor aromatic poly(o-hydroxy amide) membranes and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used in catalysis and fuel cells.06-03-2010
20100133190METHOD TO IMPROVE THE SELECTIVITY OF POLYBENZOXAZOLE MEMBRANES - The present invention discloses a novel method to improve the selectivities of polybenzoxazole (PBO) membranes prepared from aromatic polyimide membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO06-03-2010
20100133192Polymer Membranes Prepared from Aromatic Polyimide Membranes by Thermal Treating and UV Crosslinking - The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.06-03-2010
20100137124High Performance Cross-Linked Polybenzoxazole and Polybenzothiazole Polymer Membranes - In the present invention high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes and methods for making and using these membranes have been developed. The cross-linked polybenzoxazole and polybenzothiazole polymer membranes are prepared by: 1) first synthesizing polyimide polymers comprising pendent functional groups (e.g., —OH or —SH) ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone; 2) fabricating polyimide membranes from these polymers; 3) converting the polyimide membranes to polybenzoxazole or polybenzothiazole membranes by heating under inert atmosphere such as nitrogen or vacuum; and 4) finally converting the membranes to high performance cross-linked polybenzoxazole or polybenzothiazole membranes by a crosslinking treatment, preferably UV radiation. The membranes can be fabricated into any convenient geometry. The high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes of the present invention are suitable for a variety of liquid, gas, and vapor separations.06-03-2010
20100242723Blend Polymer Membranes Comprising Thermally Rearranged Polymers Derived from Aromatic Polyimides Containing Ortho-Positioned Functional Groups - The present invention discloses blend polymer membranes comprising thermally rearranged polymers derived from aromatic polyimides containing ortho-positioned functional groups and methods for making and using these blend polymer membranes. The blend polymer membranes described in the current invention are prepared by heat treatment of blend polymer membranes comprising aromatic polyimides containing ortho-positioned functional groups such as —OH or —SH groups. In some instances, an additional crosslinking step is performed to improve the selectivity of the membrane. These blend polymer membranes have improved flexibility, reduced cost, improved processability, and enhanced selectivity and/or permeability compared to the comparable polymer membranes that comprise a single polymer.09-30-2010
20100243567Polymer Membranes Derived from Aromatic Polyimide Membranes - The present invention discloses a new type of high performance polymer membranes derived from aromatic polyimide membranes and methods for making and using these membranes. The polymer membranes described in the present invention were derived from aromatic polyimide membranes by crosslinking followed by thermal treating. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The high performance polymer membranes showed significantly improved permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The high performance polymer membranes also showed significantly improved selectivity for gas separations compared to the thermal-treated but non-UV-crosslinked aromatic polyimide membranes. The high performance polymer membranes of the present invention are suitable for liquid, gas, and vapor separations, as well as for catalysis and fuel cell applications.09-30-2010
20100269698THIN FILM GAS SEPARATION MEMBRANES - A gas separation membrane comprises a blend of polyethersulfone (PES) and aromatic polyimide polymers that may comprise a plurality of first repeating units of formula (I),10-28-2010
20100270234PLASTICIZATION RESISTANT MEMBRANES - This invention discloses a composition of, a method of making, and an application of high plasticization-resistant chemically cross-linked organic-inorganic hybrid membranes such as cross-linked cellulose acetate-cellulose triacetate-polyurethanepropylsilsesquioxane membranes. These cross-linked membranes with covalently interpolymer-chain-connected hybrid networks were prepared via a sol-gel condensation polymerization of cross-linkable organic polymer-organosilicon alkoxide precursor membrane materials. CO10-28-2010
20100288122CROSSLINKED ORGANIC-INORGANIC HYBRID MEMBRANES AND THEIR USE IN GAS SEPARATION - The present invention is for crosslinked membranes and in particular for crosslinked poly(ethylene oxide)-cellulose acetate-silsesquioxane (PEO-CA-Si) organic-inorganic hybrid membranes and their use in gas separation. These crosslinked PEO-CA-Si membranes were prepared by in-situ sol-gel co-condensation of crosslinkable PEO-organotrialkoxysilane and CA-organotrialkoxysilane polymers in the presence of acetic acid catalyst during the formation of membranes. The crosslinkable PEO- and CA-organotrialkoxysilane polymers were synthesized via the reaction between the hydroxyl groups on PEO (or on CA) and the isocyanate on organotrialkoxysilane to form urethane linkages under mild conditions. The crosslinked PEO-CA-Si membranes exhibited both increased selectivity of CO11-18-2010
20100288701Staged Membrane System for Gas, Vapor, and Liquid Separations - The present invention involves the use of a multi-stage membrane system for gas, vapor, and liquid separations. In this multi-stage membrane system, high selectivity and high permeance or at least high selectivity polybenzoxazole membranes or cross-linked polybenzoxazole membranes are applied for a pre-membrane or both the pre-membrane and the secondary membrane. A primary membrane can be from conventional glassy polymers. This multi-stage membrane system can reduce inter-stage compression cost, increase product recovery and product purity for gas, vapor, and liquid separations. It can also save the cost compared to the system using all the high cost polybenzoxazole membranes or cross-linked polybenzoxazole membranes.11-18-2010
20100311565MICROPOROUS ALUMINOPHOSPHATE MOLECULAR SIEVE MEMBRANES FOR HIGHLY SELECTIVE SEPARATIONS - The present invention discloses microporous aluminophosphate (AlPO12-09-2010
20100326273PLASTICIZATION RESISTANT MEMBRANES - This invention discloses a composition of, a method of making, and an application of high plasticization-resistant chemically cross-linked organic-inorganic hybrid membranes such as cross-linked cellulose acetate-cellulose triacetate-polyurethanepropylsilsesquioxane membranes. These cross-linked membranes with covalently interpolymer-chain-connected hybrid networks were prepared via a sol-gel condensation polymerization of cross-linkable organic polymer-organosilicon alkoxide precursor membrane materials. CO12-30-2010
20100326913POLYBENZOXAZOLE MEMBRANES PREPARED FROM AROMATIC POLYAMIDE MEMBRANES - The present invention discloses high performance polybenzoxazole membranes prepared from aromatic poly(o-hydroxy amide) membranes by thermal cyclization and a method for using these membranes. The polybenzoxazole membranes were prepared by thermal treating aromatic poly(o-hydroxy amide) membranes in a temperature range of 200° to 550° C. under inert atmosphere. The aromatic poly(o-hydroxy amide) membranes used for making the polybenzoxazole membranes were prepared from aromatic poly(o-hydroxy amide) polymers comprising pendent phenolic hydroxyl groups ortho to the amide nitrogen in the polymer backbone. In some embodiments of the invention, the polybenzoxazole membranes may be subjected to an additional crosslinking step to increase the selectivity of the membranes. These polybenzoxazole membranes showed significantly improved permeability for gas separations compared to the precursor aromatic poly(o-hydroxy amide) membranes and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used in catalysis and fuel cells.12-30-2010
20100331437POLYBENZOXAZOLE MEMBRANES PREPARED FROM AROMATIC POLYAMIDE MEMBRANES - The present invention discloses high performance polybenzoxazole membranes prepared from aromatic poly(o-hydroxy amide) membranes by thermal cyclization and a method for using these membranes. The polybenzoxazole membranes were prepared by thermal treating aromatic poly(o-hydroxy amide) membranes in a temperature range of 200° to 550° C. under inert atmosphere. The aromatic poly(o-hydroxy amide) membranes used for making the polybenzoxazole membranes were prepared from aromatic poly(o-hydroxy amide) polymers comprising pendent phenolic hydroxyl groups ortho to the amide nitrogen in the polymer backbone. In some embodiments of the invention, the polybenzoxazole membranes may be subjected to an additional crosslinking step to increase the selectivity of the membranes. These polybenzoxazole membranes showed significantly improved permeability for gas separations compared to the precursor aromatic poly(o-hydroxy amide) membranes and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used in catalysis and fuel cells.12-30-2010
20110023716MIXED MATRIX MEMBRANES INCORPORATING SURFACE-FUNCTIONALIZED MOLECULAR SIEVE NANOPARTICLES - Mixed matrix membranes that are capable of separation and purification of gas mixtures are disclosed. These membranes comprise polymers that include dispersed therein nanomolecular sieve particles. In a preferred embodiment, the nanomolecular sieve particles contain attached functional groups to prevent their agglomeration.02-03-2011
20110072973POLYBENZOXAZOLE MEMBRANES - The present invention discloses a blends of an aromatic polyimide polymer and a polymer containing aromatic sulfonic acid groups that can be converted into polybenzoxazole (PBO) membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO03-31-2011
20110077312METHOD TO IMPROVE THE SELECTIVITY OF POLYBENZOXAZOLE MEMBRANES - The present invention discloses a novel method to improve the selectivities of polybenzoxazole (PBO) membranes prepared from aromatic polyimide membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO03-31-2011
20110146492AIR SEPARATION MODULE FIBER MATERIAL FORMULATION - Hollow fiber membranes, such as those used in air separation modules, are generally made from solution spinning. Typically, solvent is present in the bore of the fiber for the spinning process. This solvent, in addition to the solvent already present in the polymer dope solution, may cause voids in the fiber material. By adding citric acid to the polymer dope material, these voids may be reduced or eliminated.06-23-2011
20110278227POLYMER MEMBRANES PREPARED FROM AROMATIC POLYIMIDE MEMBRANES BY THERMAL TREATING AND UV CROSSLINKING - The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.11-17-2011
20110290112HIGH PERMEANCE POLYIMIDE MEMBRANES FOR AIR SEPARATION - The present invention discloses a new type of polyimide membranes including hollow fiber and flat sheet membranes with high permeances for air separations and a method of making these membranes. The new polyimide hollow fiber membranes have O12-01-2011
20110295052PROCESSES FOR OLEFIN/PARAFFIN SEPARATION UTILIZING POROUS, HYDROPHOBIC POLY(ETHER ETHER KETONE) MEMBRANES - Processes for olefin/paraffin separation utilizing porous, hydrophobic poly(ether ether ketone) (PEEK) membranes are provided. In accordance with an exemplary embodiment, a process for olefin/paraffin separation comprises providing a porous membrane formed of PEEK polymer functionalized with hydrophobic groups, the porous membrane having a first surface and a second surface. The first surface of the porous membrane is contacted with a feed comprising an olefin and a paraffin and a permeate is caused to flow from the second surface of the porous membrane. The permeate has a concentration of the paraffin that is higher than a concentration of the paraffin of the feed.12-01-2011
20110316181PROCESS OF MAKING ASYMMETRIC POLYBENZOXAZOLE MEMBRANES - The present invention provides a process for making an integrally skinned asymmetric polybenzoxazole hollow fiber membrane comprising spinning a dope solution via a dry-wet phase inversion technique to form a porous integrally skinned asymmetric o-hydroxy substituted polyimide or an o-hydroxy substituted polyamide hollow fiber membrane comprising microporous inorganic molecular sieve followed by thermal rearrangement at a temperature from about 250° to 500° C. to convert the polyimide or polyamide membrane into a polybenzoxazole membrane. These membranes contain microporous inorganic molecular sieve materials that can have a particle size from about 20 nm to 10 μm.12-29-2011
20120085233BLEND POLYMER MEMBRANES COMPRISING THERMALLY REARRANGED POLYMERS DERIVED FROM AROMATIC POLYIMIDES CONTAINING ORTHO-POSITIONED FUNCTIONAL GROUPS - The present invention discloses blend polymer membranes comprising thermally rearranged polymers derived from aromatic polyimides containing ortho-positioned functional groups and methods for making and using these blend polymer membranes. The blend polymer membranes described in the current invention are prepared by heat treatment of blend polymer membranes comprising aromatic polyimides containing ortho-positioned functional groups such as —OH or —SH groups. In some instances, an additional crosslinking step is performed to improve the selectivity of the membrane. These blend polymer membranes have improved flexibility, reduced cost, improved processability, and enhanced selectivity and/or permeability compared to the comparable polymer membranes that comprise a single polymer.04-12-2012
20120085238STAGED MEMBRANE SYSTEM FOR GAS, VAPOR, AND LIQUID SEPARATIONS - The present invention involves the use of a multi-stage membrane system for gas, vapor, and liquid separations. In this multi-stage membrane system, high selectivity and high permeance or at least high selectivity polybenzoxazole membranes or cross-linked polybenzoxazole membranes are applied for a pre-membrane or both the pre-membrane and the secondary membrane. A primary membrane can be from conventional glassy polymers. This multi-stage membrane system can reduce inter-stage compression cost, increase product recovery and product purity for gas, vapor, and liquid separations. It can also save the cost compared to the system using all the high cost polybenzoxazole membranes or cross-linked polybenzoxazole membranes.04-12-2012
20120157743MEMBRANE SYSTEM FOR NATURAL GAS UPGRADING - The present invention involves the use of a novel membrane system for natural gas upgrading. This membrane system includes a first-stage membrane such as a membrane prepared from the polymer of intrinsic microporosity (PIM) to selectively remove hydrocarbons from C06-21-2012
20120240763MICROPOROUS UZM-5 INORGANIC ZEOLITE MEMBRANES FOR GAS, VAPOR, AND LIQUID SEPARATIONS - The present invention discloses microporous UZM-5 zeolite membranes, methods for making the same, and methods of separating gases, vapors, and liquids using the same. The small-pore microporous UZM-5 zeolite membrane is prepared by two different methods, including in-situ crystallization of one or more layers of UZM-5 zeolite crystals on a porous membrane support, and a seeding method by in-situ crystallization of a continuous second layer of UZM-5 zeolite crystals on a seed layer of UZM-5 zeolite crystals supported on a porous membrane support. The membranes in the form of disks, tubes, or hollow fibers have superior thermal and chemical stability, good erosion resistance, high CO09-27-2012
20120276300POLYMER MEMBRANES PREPARED FROM AROMATIC POLYIMIDE MEMBRANES BY THERMAL TREATING AND UV CROSSLINKING - The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.11-01-2012
20120322119SEPARATION PROCESS USING A POLYIMIDE MEMBRANE - The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO12-20-2012
20120322646BLEND POLYMER GAS SEPARATION MEMBRANE - The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO12-20-2012
20120322911POLYIMIDE GAS SEPARATION MEMBRANES - The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO12-20-2012
20120323059PROCESS OF SEPARATING GASES USING POLYIMIDE MEMBRANES - The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO12-20-2012

Patent applications by Chunqing Liu, Schaumburg, IL US

Website © 2015 Advameg, Inc.