Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Christopher R. Carlson, Menlo Park US

Christopher R. Carlson, Menlo Park, CA US

Patent application numberDescriptionPublished
20080255505Robotic catheter systems and methods - A robotic instrument system having an elongate sheath instrument and an elongate catheter instrument positioned within a working lumen of the sheath instrument is controlled by selectively operating an instrument driver coupled to the catheter instrument to place a control element extending through the catheter instrument in tension, and thereby articulate at least a distal end portion the catheter instrument, while automatically compensating for a torsional force exerted on the sheath instrument in a first direction due to articulation of the distal end portion of the catheter, by urging the sheath instrument to twist in a second direction opposite of the first direction.10-16-2008
20080275367Systems and methods for mapping intra-body tissue compliance - Robotic instrument systems and methods for generating a geometric map of an area of body tissue which is correlated with a tissue characteristic such as tissue compliance or related property. The system comprises a robotically controlled catheter which is controlled by a robotic instrument driver. A force sensor system is provided generates force signals responsive to a force applied to the distal end of the catheter. A position determination system is also provided which generates position signals responsive to the location of the distal end of the catheter. A computer is configured to receive and process the force signals and position signals to generate a geometric map of an area of body tissue correlated to the tissue compliance of different regions of the body tissue or a tissue characteristic determinable from the tissue compliance.11-06-2008
20090012533Robotic instrument control system - A robotic instrument system includes a controller configured to control actuation of at least one servo motor, and an elongate bendable guide instrument defining a lumen and operatively coupled to, and configured to move in response to actuation of, the at least one servo motor. The controller controls movement of the guide instrument via actuation of the at least one servo motor based at least in part upon a control model, wherein the control model takes into account an attribute of an elongate working instrument positioned in the guide instrument lumen.01-08-2009
20090024141ROTATIONAL APPARATUS SYSTEM AND METHOD FOR A ROBOTIC INSTRUMENT SYSTEM - Robotic instrument systems, apparatus, and methods for controllably rotating a tool or adapter coupled to a distal portion of a medical instrument such as a catheter. An interface, which may be integral with the medical instrument or a component of a separate rotatable apparatus or adapter, is operably coupled, e.g. fixedly coupled, to the distal end of the instrument. A tool, such as a rotatable portion of a collar or tool base, or a working instrument operably coupled thereto, is rotatable relative to the interface. The interface and collar have guide channels. A control element extends through the medical instrument and respective guide channels such that the tool or collar is controllably rotatable about the instrument axis by axial movement of the control element relative to the instrument.01-22-2009
20090076476SYSTEMS AND METHODS EMPLOYING FORCE SENSING FOR MAPPING INTRA-BODY TISSUE - A medical instrument system includes a controller and a guide instrument coupled to an instrument driver, the instrument driver configured to manipulate a distal end portion of the guide instrument in response to control signals generated by the controller. A force sensor is associated with the guide instrument or with a working instrument carried by the guide instrument, and generates force signals responsive to a force applied to a respective distal end portion of the guide instrument or working instrument. A position determining system generates position data indicative of a position of the respective guide or working instrument distal end portion associated with the force sensor, and a processor operatively coupled to the force sensor and position determining system processes respective force signals and position data to generate and display a geometric rendering of an internal body tissue surface based on sensed forces applied to the respective instrument distal end portion as the guide instrument is maneuvered within an interior region of a body containing the body surface.03-19-2009
20090138025APPARATUS SYSTEMS AND METHODS FOR FORMING A WORKING PLATFORM OF A ROBOTIC INSTRUMENT SYSTEM BY MANIPULATION OF COMPONENTS HAVING CONTROLLABLY RIGIDITY - Robotic instrument systems, apparatus, and methods for controllably manipulating the rigidity of a distal portion of one or more sheath catheters advanced through an elongate sheath to controllably form a temporary, substantially rigid platform from which other robotically controlled instruments may be manipulated. The platform is formed by one or more multi-segment sheath catheters that can be controlled to be flexible during advancement and substantially rigid at the target site, thereby reducing the length of the operational lever arm of the instrument. For this purpose, a sheath catheter includes a plurality segments that interlock and do not rotate when drawn together, and are connected by a control element, the tension of which may be manipulated by a robotic instrument system to transform the sheath catheter between a flexible state during advancement through the elongate sheath and a substantially rigid state when the sheath catheter is to serve as a platform or component thereof.05-28-2009
20090268955Systems, Methods and Devices for Correlating Reference Locations Using Image Data - A variety of embodiments relate to systems, methods, circuits and devices are implemented to perform location-based correlations. One such embodiment relates to a circuit-implemented method for use with an actual probe within an anatomical structure. For a virtual probe at a virtual location within a model of the anatomical structure, virtual image data captured by the virtual probe is generated. The virtual image data is assessed through a probabilistic comparison of the virtual image data to actual image data captured by the actual probe at an actual location. Based upon the assessment, a correlation is updated between the actual location of the actual probe and a sensed location of the actual probe to provide synchronicity between the sensed location and actual location. For maintaining the synchronicity between a subsequently sensed location and subsequent actual location, the assessment is used to select a new virtual location for the virtual probe.10-29-2009
20100331856MULTIPLE FLEXIBLE AND STEERABLE ELONGATE INSTRUMENTS FOR MINIMALLY INVASIVE OPERATIONS - Configurations are described for conducting minimally invasive medical interventions utilizing elongate robotically controlled instruments and assemblies thereof. In one embodiment, a junction sheath may be utilized to facilitate surgical triangulation of two interventional instrument assemblies, while also directing them to the surgical theater through a minimal single wound or surgical port. One or more instrument drivers, and one or more master input devices comprising an operator workstation, may be utilized to independently and simultaneously control multiple degrees of freedom pertinent to each instrument comprising one or more instrument assembly.12-30-2010
20110015483ENDOSCOPIC ROBOTIC CATHETER SYSTEM - A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a elongate instrument interface including a plurality of instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The elongate instrument preferably comprises and/or defines other lumens to accommodate instruments such as an optics bundle, a light bundle, a laser fiber, and flush irrigation. The working lumen preferably is configured to accommodate a grasping or capturing tool, such as a collapsible basket or grasper, for use in procedures such as kidney stone interventions. The elongate instrument includes a plurality of instrument control elements operatively coupled to respective drive elements and secured to the distal end of the instrument. The instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.01-20-2011
20110015484ENDOSCOPIC ROBOTIC CATHETER SYSTEM - A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a elongate instrument interface including a plurality of instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The elongate instrument preferably comprises and/or defines other lumens to accommodate instruments such as an optics bundle, a light bundle, a laser fiber, and flush irrigation. The working lumen preferably is configured to accommodate a grasping or capturing tool, such as a collapsible basket or grasper, for use in procedures such as kidney stone interventions. The elongate instrument includes a plurality of instrument control elements operatively coupled to respective drive elements and secured to the distal end of the instrument. The instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.01-20-2011
20110015648ENDOSCOPIC ROBOTIC CATHETER SYSTEM - A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a elongate instrument interface including a plurality of instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The elongate instrument preferably comprises and/or defines other lumens to accommodate instruments such as an optics bundle, a light bundle, a laser fiber, and flush irrigation. The working lumen preferably is configured to accommodate a grasping or capturing tool, such as a collapsible basket or grasper, for use in procedures such as kidney stone interventions. The elongate instrument includes a plurality of instrument control elements operatively coupled to respective drive elements and secured to the distal end of the instrument. The instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.01-20-2011
20110270273SYSTEMS AND METHODS FOR PERFORMING MINIMALLY INVASIVE SURGICAL OPERATIONS - A robotic surgical system (11-03-2011
20110295247SYSTEM AND METHOD FOR AUTOMATED MINIMALLY INVASIVE THERAPY USING RADIOMETRY - Systems and methods are described for automating aspects of minimally invasive therapeutic treatment of patients. In one embodiment a robotic catheter system may comprise a controller including a master input device; and an electromechanically steerable elongate instrument having a proximal interface portion and a distal portion, the proximal interface portion being configured to be operatively coupled to an electromechanical instrument driver in communication with the controller, the distal portion being configured to be interactively navigated adjacent internal tissue structures of a patient's body in response to signals from the controller; wherein the distal portion of the elongate instrument comprises an antenna operatively coupled to the controller, and wherein the controller is configured to determine the temperature of structures adjacent to the distal portion of the elongate instrument utilizing radiometry analysis.12-01-2011
20110295267SYSTEM AND METHOD FOR AUTOMATED TISSUE STRUCTURE TRAVERSAL - Systems and methods are described for automating aspects of minimally invasive therapeutic treatment of patients. A robotic tissue structure traversal system may comprise a controller including a master input device, an electromechanically controlled elongate instrument having a proximal interface portion and a distal portion, the proximal interface portion being configured to be operatively coupled to an electromechanical instrument driver in communication with the controller, the distal portion comprising a traversing tip and being configured to be interactively navigated about internal structures of a patient's body in response to signals from the controller; and a load sensor operatively coupled between the distal portion of the elongate instrument and the controller; wherein the controller is configured to automatically advance the traversing tip through a thickness of an internal structure by observing loads from the load sensor.12-01-2011
20110295268SYSTEM AND METHOD FOR AUTOMATED MASTER INPUT SCALING - Embodiments are described for automating aspects of minimally invasive therapeutic treatment of patients. A robotic medical instrument system, comprising an elongate instrument having proximal and distal ends; a controller configured to selectively actuate one or more motors operably coupled to the instrument to thereby selectively move the instrument; a master input device in communication with the controller and configured to generate input commands in response to a directional movement of the master input device; and a load sensor operatively coupled to the elongate instrument and configured to sense magnitude and direction of loads applied to the distal end of the elongate instrument; wherein the controller is configured to compute an instrument movement command to selectively move the instrument based upon the input commands and an input command scaling factor applied to the input commands, the input command scaling factor being variable with the magnitude of sensed loads.12-01-2011
20120035481SYSTEMS AND METHODS FOR THREE-DIMENSIONAL ULTRASOUND MAPPING - An automated medical system comprises a first instrument assembly including a first ultrasound transducer having a first transducer field of view that transmits and receives ultrasound signals in imaging planes disposed circumferentially about a guide instrument, and a second instrument assembly including a second ultrasound transducer having a second transducer field of view coupled to one of a second flexible guide instrument and a working instrument. A computing system is operatively coupled to the respective first and second transducers and configured to determine a relative spatial orientation of the respective first and second transducers based at least in part on detecting a signal transmitted by one of the first and second transducers and received by the other of the first and second transducers, the received signal having an amplitude indicating the receiving one of the transducers is in the field of view of the transmitting one of the transducers.02-09-2012
20120209293Robotic catheter systems and methods - A robotic instrument system having an elongate sheath instrument and an elongate catheter instrument positioned within a working lumen of the sheath instrument is controlled by selectively operating an instrument driver coupled to the catheter instrument to place a control element extending through the catheter instrument in tension, and thereby articulate at least a distal end portion the catheter instrument, while automatically compensating for a torsional force exerted on the sheath instrument in a first direction due to articulation of the distal end portion of the catheter, by urging the sheath instrument to twist in a second direction opposite of the first direction.08-16-2012
20130190741SYSTEMS AND METHODS FOR PERFORMING MINIMALLY INVASIVE PROCEDURES - A robotic medical surgical system configured for performing prostate procedures includes a controller including a master input device, an instrument driver in communication with the controller, an instrument assembly operatively coupled to the instrument driver, and a surgical tool operatively coupled to the controller and carried on the distal end portion of the instrument assembly, wherein the controller and master input device are configured to allow a system operator to position the surgical tool proximate a prostate abnormality without entering a restricted zone, at least partially automatically controlled based on an images obtained of the surgical zone.07-25-2013
20140261453NONCONTACT ENCODER FOR MEASURING CATHETER INSERTION - A robotically controlled surgical system includes a guidewire coupled to a catheter, an active drive system coupled to the guidewire and configured to drive the guidewire in an axial direction; a sensor positioned proximate the guidewire and configured to detect optical characteristics of a surface of the guidewire, and a computer coupled to the sensor. The computer programmed to drive the guidewire in the axial direction a desired distance, detect a first pattern on the surface of the guidewire when the guidewire is at a first axial position, detect a second pattern on the surface of the guidewire when the guidewire is at a second axial position, calculate an actual distance that the guidewire has actually traveled based on the detected first and second patterns, and compare the desired distance to the actual distance.09-18-2014
20140357953METHODS AND DEVICES FOR CONTROLLING A SHAPEABLE MEDICAL DEVICE - Systems and methods are described herein that improve control of a shapeable or steerable instrument using shape data. Additional methods include preparing a robotic medical system for use with a shapeable instrument and controlling advancement of a shapeable medical device within an anatomic path. Also described herein are methods for altering a data model of an anatomical region.12-04-2014

Patent applications by Christopher R. Carlson, Menlo Park, CA US

Website © 2015 Advameg, Inc.