Patent application number | Description | Published |
20130194046 | SYSTEMS AND METHODS FOR EXTERNAL FRIT MOUNTED COMPONENTS - Embodiments of the present invention provide improved systems and methods for external frit mounted components on a sensor device. In one embodiment, a method for fabricating a sensor device comprises securing at least one component stack on a sensor body over at least one opening in the sensor body, wherein the at least one component stack comprises a plurality of components and applying a frit to the plurality of components in the at least one component stack and the sensor body. The method further comprises heating the frit, the at least one component stack, and the sensor body such that the frit melts and cooling the frit, the at least one component stack, and the sensor body such that the at least one component stack is secured to the sensor body. | 08-01-2013 |
20130320231 | ATOMIC SENSOR PHYSICS PACKAGE WITH INTEGRATED TRANSMISSIVE AND REFLECTIVE PORTIONS ALONG LIGHT PATHS - In one embodiment, a block for a physics package of an atomic sensor is provided. The block comprises one or more sections of optically transparent material defining a vacuum sealed chamber, and including a plurality of transmissive and reflective surfaces to define a plurality of light paths intersecting the vacuum sealed chamber. The one or more sections of optically transparent material include a first monolithic section defining at least a portion of the vacuum sealed chamber. The first monolithic section includes a first portion disposed across a first light path of the plurality of light paths such that light in the first light path is incident on the first portion of the first monolithic section. | 12-05-2013 |
20140076602 | HERMETIC SEALING OF ATOMIC SENSOR USING SOL-GEL TECHNIQUE - A method of forming a physics package for an atomic sensor comprises providing a plurality of panels, with each of the panels having multiple edges, and assembling the panels in a three-dimensional multi-faced geometric configuration such that the edges of adjacent panels are aligned with each other. A sol-gel material is applied to the edges of the panels, and the sol-gel material is cured to hermetically seal adjacent panels together. | 03-20-2014 |
20140085014 | HERMETICALLY SEALED ATOMIC SENSOR PACKAGE MANUFACTURED WITH EXPENDABLE SUPPORT STRUCTURE - A method of forming a physics package for an atomic sensor comprises providing an expendable support structure having a three-dimensional configuration, providing a plurality of optical panels, and assembling the optical panels on the expendable support structure such that edges of adjacent panels are aligned with each other. The edges of adjacent panels are sealed together to form a physics block having a multifaced geometric configuration. The expendable support structure is then removed while leaving the physics block intact. | 03-27-2014 |
20140096607 | ATOMIC SENSOR PHYSICS PACKAGE WITH METAL FRAME - One embodiment is directed towards a physics package of an atomic sensor. The physics package includes a frame composed of metal and including a plurality of slender support members extending between one another in a three dimensional structure. The support members define boundaries between adjacent apertures defined in the frame. The plurality of support members include a plurality of mounting surfaces adjacent to the apertures. The physics package also includes a plurality of panes attached to the mounting surfaces of the frame. The plurality of panes cover the apertures such that the frame and the plurality of panes define a vacuum chamber and provide three light paths that cross within the vacuum chamber at 90 degree angles with respect to one another. The physics package also includes a chamber evacuation structure for evacuating the vacuum chamber. | 04-10-2014 |
20150022816 | ATOMIC SENSOR PHYSICS PACKAGE HAVING OPTICALLY TRANSPARENT PANES AND EXTERNAL WEDGES - One embodiment is directed towards a physics package of an atomic sensor. The physics package includes a plurality of panes of optically transparent material enclosing a vacuum chamber and one or more wedges attached to an external surface of one or more of the panes. The physics package also includes at least one of a light source, photodetector, or mirror attached to the one or more wedges, the light source configured to generate an input light beam for the vacuum chamber, the photodetector configured to detect an output light beam from the vacuum chamber, and the mirror configured to reflect a light beam from the vacuum chamber back into the vacuum chamber, wherein the wedge is configured to oriented such a light source, photodetector, or mirror such that a respective light beam corresponding thereto transmits through a corresponding pane at an acute angle with respect to the corresponding pane. | 01-22-2015 |
20150192417 | RING LASER GYROSCOPE WITH INTEGRATED POLARIZATION - A ring laser gyroscope comprises a laser block that defines an optical closed loop pathway configured to contain a lasing gas. A plurality of mirror structures are respectively mounted on the laser block, with each of the mirror structures having a respective reflective surface that is in optical communication with the optical closed loop pathway. A plurality of electrodes are coupled to the laser block, with the electrodes configured to generate a pair of counter-propagating laser beams from the lasing gas in the optical closed loop pathway. At least one optical sensor is coupled to one of the mirror structures, with the optical sensor in optical communication with the closed loop pathway. A polarizer is in optical communication with the optical sensor. The polarizer is configured to pass laser light having substantially one polarization mode to the optical sensor. | 07-09-2015 |
20150354960 | SYSTEMS AND METHODS FOR A GLASS-CERAMIC BARRIER COATING - Systems and methods for a glass-ceramic barrier coating are provided. In certain embodiments, a sensor comprises a sensor body, the sensor body enclosing a desired environment within a volume, wherein the sensor body is fabricated from a glass-ceramic; and a barrier coating formed on at least one surface of the sensor body, wherein the barrier coating vacuum seals the desired environment within the volume from an environment external to the volume. | 12-10-2015 |