Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Chien-Min Huang, Clovis US

Chien-Min Huang, Clovis, CA US

Patent application numberDescriptionPublished
20100214425METHOD OF IMPROVING THE VIDEO IMAGES FROM A VIDEO CAMERA - A method of improving a video image by removing the effects of camera vibration comprising the steps of, obtaining a reference frame, receiving an incoming frame, determining the frame translation vector for the incoming frame, translating the incoming frame to generate a realigned frame, performing low pass filtering in the spatial domain on pixels in the realigned frame, performing low pass filtering in the spatial domain on pixels in the reference frame, determining the absolute difference between the filtered pixels in the reference frame and the filtered pixels in the realigned frame, performing low pass filtering in the temporal domain on the pixels in the realigned frame to generate the output frame if the absolute difference is less than a predetermined threshold, and providing the realigned frame as the output frame if the absolute difference is greater than the predetermined threshold.08-26-2010
20120154599ZOOMING FACTOR COMPUTATION - Systems, methods, and devices are disclosed for determining a zooming factor for a camera in a pan, tilt, and zoom (PTZ) camera tracking system to enable a camera to keep an object at a constant size within the camera's viewing area, despite changes in the object's distance from the camera. This provides a complement to a camera's pan and tilt tracking of the moving object. For example, a PTZ camera tracking system that determines an object to track, utilizes information regarding images of the object of interest are used to determine a zooming factor (or other zooming value) for a camera in the PTZ camera tracking system. This information includes variables such as tilt angles of one or more cameras and a reference zooming factor.06-21-2012
20120169923VIDEO CODING - Techniques are discussed for providing mechanisms for coding and transmitting high definition video, e.g., over low bandwidth connections. In particular, foreground-objects are identified as distinct from the background of a scene represented in a plurality of video frames received from a video source, such as a camera. In identifying foreground-objects, semantically significant and semantically insignificant movement (e.g., repetitive versus non-repetitive movement) is differentiated. Processing of the foreground-objects and background proceed at different update rates or frequencies.07-05-2012
20130155290Method and System for Image Centering during Zooming - The methods and systems described herein are directed to image processing. More specifically, the image processing described herein may include centering an object in the field of view during zooming. The image processing methods and systems may further include setting a magnification factor, positioning the camera in a first field of view capturing a first image, setting a second magnification factor, and capturing a second image. Additionally, the described techniques may include altering the first image to determine an offset and adjusting the camera based on the offset.06-20-2013
20130162838Transformation between Image and Map Coordinates - Systems and methods for transformations between image and map coordinates, such as those associated with a video surveillance system, are described herein. An example of a method described herein includes selecting a reference point within the image with known image coordinates and map coordinates, computing at least one transformation parameter with respect to a location and a height of the camera and the reference point, detecting a target location to be tracked within the image, determining image coordinates of the target location, and computing map coordinates of the target location based on the image coordinates of the target location and the at least one transformation parameter.06-27-2013
20140139680Method And System For Metadata Extraction From Master-Slave Cameras Tracking System - An embodiment of the present invention includes a master camera that may record master metadata regarding an object of interest and communicate the master metadata to a slave camera. The slave camera may zoom, pan, or tilt to isolate and record more detailed image data regarding the object of interest based on the master metadata. In addition, the slave camera may record slave metadata regarding the object of interest. The master and slave metadata may be stored associated with the recorded image data enabling a later search for the object of interest to be expedited. The recorded image data including the object of interest may be identified with greater ease as it may be guided by the master or slave metadata, or a combination thereof. According to embodiments presented herein, processing time for searching and identifying an object of interest may be reduced by enabling a search on the metadata associated with image data, rather than by searching the image data itself.05-22-2014
20140152815Window Blanking for Pan/Tilt/Zoom Camera - Network cameras employing advanced video analytics are increasingly being used in both public and private settings. Unlike fixed surveillance cameras, pan/tilt/zoom cameras provide a dynamic field-of-view. Some regions within a given field-of-view can be designated as private and may not be recorded. A window-blanking feature, according to an embodiment of the invention, enables an ability to block out defined portions of the video where a privacy zone may otherwise appear. Through use of the embodiment, consistent privacy is provided during dynamic surveillance to ensure compliance with privacy regulations or contractual arrangements relating to use of a surveillance camera having a privacy zone within the given field-of-view.06-05-2014
20140253783FOCUS CONTROL FOR PTZ CAMERAS - Systems and methods for focus control in a pan-tilt-zoom (PTZ) camera system are described herein. An example of a method described herein includes identifying a set of trace curves associated with the camera system, each of the trace curves specifying relationships between focus lens positions and zoom lens positions for a corresponding camera position, selecting a trace curve using the set of trace curves and one or more of pan angle, tilt angle or installation height of the camera system, and identifying a focus lens position for a current zooming factor of the camera system based on the selected trace curve.09-11-2014
20140267704System and Method For Audio Source Localization Using Multiple Audio Sensors - An automated security surveillance system ideally determines a location of a possible disturbance and adjusts its cameras to record video footage of the disturbance. In one embodiment, a disturbance can be determined by recording audio of the nearby area. A system, coupled to a camera, may include an arrangement of at least four audio sensors configured record audio of the nearby area to produce independent outputs. The system further may include a processing module configured to determine an angle and distance of an audio source relative to a location of the arrangement of the at least four audio sensors. The system can then adjust the camera by rotation along an azimuth or elevation angle and adjusting the zoom level to record video of the audio source. Through use of the system, a surveillance system can present an image of a source of possible disturbance to an operator more rapidly and precisely than through manual techniques.09-18-2014

Patent applications by Chien-Min Huang, Clovis, CA US

Website © 2015 Advameg, Inc.